Exam 3
Grading key to problem 4
4)
a) The general formula for the fifth degree Taylor polynomial for $\mathrm{f}(\mathrm{x})$ is
$P_{5}(x)=f(0)+f^{\wedge}(0) x+\frac{1}{2!} f^{"}(0) x^{2}+\frac{1}{3!} f^{(3)}(0) x^{3}+\frac{1}{4!} f^{(4)}(0) x^{4}+\frac{1}{5!} f^{(5)}(0) x^{5}$
Finding the derivatives of $f(x)=e^{-x}$ was worth five points.
Properly evaluating the derivatives at 0 and using the correct formula was worth the other five points.
$P_{5}(x)=1-x+\frac{1}{2!} x^{2}-\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}-\frac{1}{5!} x^{5}$
b) Changing to a continuous variable (usually " x ") was worth 5 points. Then properly finding the limit was worth 10 points (with justifications for passing the limit through to the argument of the exponential function worth 5 and evaluating correctly worth 5).

Let $f(x)=e^{1 / x}$. Note that $\mathrm{f}(\mathrm{x})$ is continuous and $f(n)=e^{1 / n}$. So, by Theorem 9.4, $\lim _{n \rightarrow \infty} e^{1 / n}=\lim _{x \rightarrow \infty} e^{1 / x}$.

Since exponentiation is a continuous function, we have that $\lim _{x \rightarrow \infty} e^{1 / x}=e^{l i m_{x \rightarrow \infty} 1 / x}=e^{0}=1$.

