Math 141 Midterm 4 Question 4 Solution

December 8, 2014

Question: a) Write

$$
\frac{2 \sqrt{3}-2 i}{-1+i \sqrt{3}}
$$

in the polar form $r e^{i \theta}$.
b)Find all fourth roots of 7, i.e., all complex number z such that $z^{4}=7$.

Solution:
a) Multiply the numerator and denominator by the complex conjugate of the denominator $-1-i \sqrt{3}$ and simplify to

$$
-\sqrt{3}-i
$$

Now change into polar form. $r=\sqrt{(-\sqrt{3})^{2}+(-1)^{2}}=2$ and so

$$
-\sqrt{3}-i=2(\cos (\theta)+i \sin (\theta))
$$

Equate the real and imaginary pieces so $\cos (\theta)=\frac{-\sqrt{3}}{2}$ and $\sin (\theta)=-\frac{1}{2}$. Thus

$$
r=2, \theta=\frac{7 \pi}{6}+2 \pi k
$$

5 pts
Therefore

$$
\frac{2 \sqrt{3}-2 i}{-1+i \sqrt{3}}=2 e^{i\left(\frac{7 \pi}{6}+2 \pi k\right)}
$$

b) Since 7 is on the real axis we can see that $r=7$ and $\theta=2 \pi k$. Therefore

$$
z^{4}=7 e^{i 2 \pi k}
$$

Thus

$$
z=7^{\frac{1}{4}} e^{i \frac{\pi}{2} k}
$$

To find the four roots we let $k=0,1,2,3$. Our four roots are

$$
\begin{aligned}
z_{1}=7^{\frac{1}{4}} & 1 \mathrm{pt} \\
z_{2} & =7^{\frac{1}{4}} e^{i \frac{\pi}{2}} \\
z_{3} & =7^{\frac{1}{4}} e^{i \pi} \\
z_{4} & =7^{\frac{1}{4}} e^{i \frac{3 \pi}{2}}
\end{aligned}
$$

