MATH 630, Spring 2007, SOLUTION SKETCHES for SAMPLE FINAL

1) Let $f:[0,1] \rightarrow \mathbb{R}$ be an increasing right continuous function with the property that

$$
\forall g \in C([0,1]), \quad \int_{0}^{1} g d f=0
$$

Prove that f is a constant function.
Answer: Assume by contradiction that f is not constant. This implies $f(0)<f(1)$. Because g is continuous everywhere, Theorem 3.5.4 implies that it is Riemann-Stieltjes integrable with respect to f. Compute $S_{P}^{f}(g)$ (see (3.26)) for $g=1$ on $[0,1]$ and for an arbitrary partition P. Observe that it is independent of P and compute the upper Riemann-Stieltjes integral in terms of f. Note the contradiction with the assumption we made at the beginning.
2) Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function and suppose $f^{\prime} \in B V([a, b])$. Prove that $f^{\prime} \in C([a, b])$.

Answer: Recall the Darboux property of the derivative (i.e., that is assumes all the values between any two of its values). Assume by contradiction that f^{\prime} is not continuous and draw a contradiction between this and the fact that f^{\prime} has the Darboux property and is of bounded variation.
3) Let (X, \mathcal{A}, μ) be a measure space. Let $1 \leq p \leq \infty, 1 / p+1 / q=1$. Assume that $\left\{f_{n}: n=1, \ldots\right\} \subseteq L_{\mu}^{p}(X),\left\{g_{n}: n=1, \ldots\right\} \subseteq L_{\mu}^{q}(X)$ are such that $f_{n} \rightarrow f$ in $L_{\mu}^{p}(X)$ and $g_{n} \rightarrow g$ in $L_{\mu}^{q}(X)$. Prove that $f_{n} g_{n} \rightarrow f g$ in $L_{\mu}^{1}(X)$.

Answer: Since we say that $f_{n} \rightarrow f$ in $L_{\mu}^{p}(X)$, it means that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. In particlar, $f_{n}-f \in L_{\mu}^{p}(X)$, and so $f \in L_{\mu}^{p}(X)$. Same for g. To show $f_{n} g_{n} \rightarrow f g$ in $L_{\mu}^{1}(X)$ write
$\int_{X}\left|f_{n} g_{n}-f g\right| d \mu=\int_{X}\left|\left(f_{n} g_{n}-f_{n} g\right)+\left(f_{n} g-f g\right)\right| d \mu \leq \int_{X}\left|f_{n}\right|\left|g_{n}-g\right| d \mu+\int_{X}|g|\left|f_{n}-f\right| d \mu$.
Use the assumptions on convergence of f_{n} 's and g_{n} 's to complete the proof. (Note that convergence in norm implies norm convergence, and boundedness of truncated sequences of norms.)
4) Let (X, \mathcal{A}, μ) be a finite measure space. Assume that $\left\{f_{n}: n=1, \ldots\right\} \subseteq$ $L_{\mu}^{2007}(X)$ is bounded in the norm $L_{\mu}^{2007}(X)$ and that $f_{n} \rightarrow f \mu$-a.e. Show that $f_{n} \rightarrow f$ in $L_{\mu}^{1}(X)$.

Answer: Let $p=2007$. Let q be the adjoint. Use Fatou lemma to observe that $f \in L_{\mu}^{1}(X)$. Thus, wlog wma that $f_{n} \rightarrow 0 \mu$-a.e.. Fix $\epsilon>0$. Use Egorov's theorem to find a set $A=A(\epsilon)$ such that $\mu(A)<\epsilon^{q}$ and f_{n} converges uniformly to 0 on A^{\sim}. Write:

$$
\int_{X}\left|f_{n}\right| d \mu \leq \int_{A}+\int_{A^{\sim}}\left|f_{n}\right| d \mu \leq \mu(X)\left\|f_{n}\right\|_{\infty}+\int_{X} \chi_{A}\left|f_{n}\right| d \mu
$$

Estimate the first summand in the above, by choosing n sufficiently large so that $\left\|f_{n}\right\|_{\infty} \leq \epsilon /(2 \mu(X))$. Estimate the second summand by first noting that $\int \chi_{A}\left|f_{n}\right| d \mu \leq$ $\left\|\chi_{A}\right\|_{q}\left\|f_{n}\right\|_{p} \leq \mu(A)^{1 / q}\left\|f_{n}\right\|_{p}$. Use the boundedness of f_{n} 's to conclude your estimates.
5) Let (X, \mathcal{A}, μ) be a finite measure space. Show that $L_{\mu}^{p}(X) \subseteq L_{\mu}^{r}(X)$, for any $1 \leq r \leq p \leq \infty$. Show that the assumption $\mu(X)<\infty$ is necessary.

Answer: Write $X=A \cup A^{\sim}$, where $A=\{x \in X:|f(x)| \leq 1\}$. To show that $L_{\mu}^{p}(X) \subseteq L_{\mu}^{r}(X)$, it is suppficient to show that $\|f\|_{p}<\infty$ implies $\|f\|_{r}<\infty$. You do this as follows:

$$
\int_{X}|f|^{r} d \mu \leq \int_{A}+\int_{A^{\sim}}|f|^{r} d \mu \leq \int_{A} d \mu+\int_{A^{\sim}}|f|^{p} d \mu \leq \mu(X)+\|f\|_{p}^{p}
$$

If $\|f\|_{p}<\infty$, so is $\|f\|_{r}$.

