MATH 630, Spring 2007, SOLUTION SKETCHES for SAMPLE FINAL

1) Let $f:[0,1] \to \mathbb{R}$ be an increasing right continuous function with the property that

$$\forall g \in C([0,1]), \quad \int_0^1 g \, df = 0$$

Prove that f is a constant function.

Answer: Assume by contradiction that f is not constant. This implies f(0) < f(1). Because g is continuous everywhere, Theorem 3.5.4 implies that it is Riemann-Stieltjes integrable with respect to f. Compute $S_P^f(g)$ (see (3.26)) for g = 1 on [0, 1] and for an arbitrary partition P. Observe that it is independent of P and compute the upper Riemann-Stieltjes integral in terms of f. Note the contradiction with the assumption we made at the beginning.

2) Let $f : [a, b] \to \mathbb{R}$ be a differentiable function and suppose $f' \in BV([a, b])$. Prove that $f' \in C([a, b])$.

Answer: Recall the Darboux property of the derivative (i.e., that is assumes all the values between any two of its values). Assume by contradiction that f' is not continuous and draw a contradiction between this and the fact that f' has the Darboux property and is of bounded variation.

3) Let (X, \mathcal{A}, μ) be a measure space. Let $1 \leq p \leq \infty$, 1/p + 1/q = 1. Assume that $\{f_n : n = 1, \ldots\} \subseteq L^p_{\mu}(X)$, $\{g_n : n = 1, \ldots\} \subseteq L^q_{\mu}(X)$ are such that $f_n \to f$ in $L^p_{\mu}(X)$ and $g_n \to g$ in $L^q_{\mu}(X)$. Prove that $f_n g_n \to fg$ in $L^1_{\mu}(X)$.

Answer: Since we say that $f_n \to f$ in $L^p_{\mu}(X)$, it means that $||f_n - f||_p \to 0$. In particlar, $f_n - f \in L^p_{\mu}(X)$, and so $f \in L^p_{\mu}(X)$. Same for g. To show $f_n g_n \to fg$ in $L^1_{\mu}(X)$ write

$$\int_{X} |f_{n}g_{n} - fg| \ d\mu = \int_{X} |(f_{n}g_{n} - f_{n}g) + (f_{n}g - fg)| \ d\mu \le \int_{X} |f_{n}||g_{n} - g| \ d\mu + \int_{X} |g||f_{n} - f| \ d\mu = \int_{X} |f_{n}g_{n} - f| \ d\mu = \int_{X} |g| \ d\mu = \int_{X} |g| \ d\mu = \int_{X} |f_{n}g_{n} - f| \ d\mu = \int_{X}$$

Use the assumptions on convergence of f_n 's and g_n 's to complete the proof. (Note that convergence in norm implies norm convergence, and boundedness of truncated sequences of norms.)

4) Let (X, \mathcal{A}, μ) be a finite measure space. Assume that $\{f_n : n = 1, \ldots\} \subseteq L^{2007}_{\mu}(X)$ is bounded in the norm $L^{2007}_{\mu}(X)$ and that $f_n \to f \mu$ -a.e. Show that $f_n \to f$ in $L^1_{\mu}(X)$.

Answer: Let p = 2007. Let q be the adjoint. Use Fatou lemma to observe that $f \in L^1_{\mu}(X)$. Thus, wlog wma that $f_n \to 0 \mu$ -a.e.. Fix $\epsilon > 0$. Use Egorov's theorem to find a set $A = A(\epsilon)$ such that $\mu(A) < \epsilon^q$ and f_n converges uniformly to 0 on A^{\sim} . Write:

$$\int_X |f_n| \ d\mu \le \int_A + \int_{A^{\sim}} |f_n| \ d\mu \le \mu(X) \|f_n\|_{\infty} + \int_X \chi_A |f_n| \ d\mu$$

Estimate the first summand in the above, by choosing *n* sufficiently large so that $||f_n||_{\infty} \leq \epsilon/(2\mu(X))$. Estimate the second summand by first noting that $\int \chi_A |f_n| d\mu \leq ||\chi_A||_q ||f_n||_p \leq \mu(A)^{1/q} ||f_n||_p$. Use the boundedness of f_n 's to conclude your estimates.

5) Let (X, \mathcal{A}, μ) be a finite measure space. Show that $L^p_{\mu}(X) \subseteq L^r_{\mu}(X)$, for any $1 \leq r \leq p \leq \infty$. Show that the assumption $\mu(X) < \infty$ is necessary.

Answer: Write $X = A \cup A^{\sim}$, where $A = \{x \in X : |f(x)| \leq 1\}$. To show that $L^p_{\mu}(X) \subseteq L^r_{\mu}(X)$, it is supplicient to show that $||f||_p < \infty$ implies $||f||_r < \infty$. You do this as follows:

$$\int_{X} |f|^{r} d\mu \leq \int_{A} + \int_{A^{\sim}} |f|^{r} d\mu \leq \int_{A} d\mu + \int_{A^{\sim}} |f|^{p} d\mu \leq \mu(X) + \|f\|_{p}^{p} d\mu \leq \mu(X) + \|f\|_{p}^{$$

If $||f||_p < \infty$, so is $||f||_r$.