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Broadband focusing of acoustic plasmons in graphene with an applied current
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Nonreciprocal plasmons in current-driven, isotropic, and homogenous graphene with proximal metallic gates
are theoretically explored. Nearby metallic gates screen the Coulomb interactions, leading to linearly dispersive
acoustic plasmons residing close to its particle-hole continuum counterpart. We show that the applied bias leads
to spectral broadband focused plasmons whose resonance linewidth is dependent on the angular direction relative
to the current flow due to Landau damping. We predict that forward focused nonreciprocal plasmons are possible
with accessible experimental parameters and setup.
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As optoelectronic technology advances, there is increas-
ing demand for the development of strongly nonreciprocal
light-based devices [1–4]. While magneto-optical systems are
well known for exhibiting nonreciprocity, the need for an
external magnetic bias makes it difficult to integrate these
systems onto nanophotonic platforms. This has driven a shift
of the focus in recent years to the use of an external cur-
rent bias to induce nonreciprocity [5–12]. Particular focus
has been given to graphene surface plasmons, as their wide
frequency range and gate tunability offer a wide variety of
applications [13–19].

The effect of a current bias on graphene surface plasmons
is to induce a Doppler shift in the plasmonic spectrum. By this
effect, plasmons that are moving in the same direction as the
electron flow are blue shifted, while plasmons moving against
the electron flow are red shifted [9]. It has been shown that
when the drift velocity is a significant fraction of the Fermi
velocity in graphene, there exists a band of frequencies in
which the red-shifted plasmons are forbidden and the plasmon
is effectively unidirectional [5,6,9].

In this Letter, we show that a more versatile phenomenon
can be found in graphene-dielectric-metal systems, which
exhibit acoustic plasmons [20–23]. When the separation d
between the metal and graphene is small, the sound velocity
of the acoustic plasmon is within a few percent of the Fermi
velocity; and the plasmon branch lies in close proximity to the
particle-hole continuum [15,24–26]. If in addition an external
bias is applied to the system, the plasmons moving against
the electron flow can be brought into the particle-hole contin-
uum and become damped. This effect causes focusing of the
acoustic plasmons in the direction of the electron flow. Below
we provide analytical and numerical calculations, which show
how the focusing effect depends on the applied current, the
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electron density, and the dielectric environment. We empha-
size that the major advantage in this system compared to the
conventional plasmons is that the focusing effect occurs over
a wide range of frequencies 0 < h̄ω < 2(EF + h̄vF ks), where
ks is the magnitude of the Fermi surface shift used to model
the current bias below. Hence the system is more suitable for
broadband applications.

Within the random phase approximation (RPA), the dy-
namical polarization of graphene is given by [13,14]

�(q, ω) = gsgv

(2π )2

∑
s,s′

∫
d2k fs,s′ (k, q) (1)

× nF [Es′
(k + q)] − nF [Es(k)]

Es′ (k + q) − Es(k) − h̄ω − i0+ , (2)

where gs(v) = 2 is the spin (valley) degeneracy, the prefac-
tor fs,s′ (k, q) is the band-overlap integral, and Es(k) is the
dispersion of the conduction (s = 1) and valence band (s =
−1). We assume that the graphene is isotropic and spatially
homogenous. Within the Dirac-cone approximation, we have
Es(k) = sh̄vF k with vF � 9 × 107 cm s−1, and

fs,s′ (k, q) = 1

2

(
1 + ss′ k + q cos(θk − θq)

|k + q|
)

, (3)

where θp is the angle between the wave vector p (p = k or
q) and the x axis. The equilibrium electronic occupation is
determined by the Fermi-Dirac distribution

nF (E ) =
[
exp

(E − EF

kBT

)
+ 1

]−1

, (4)

where EF = h̄vF kF is the Fermi energy measured relative to
the charge neutrality point, and T is the temperature of the
system. We assume for definiteness that EF > 0.

In the presence of an applied current, the electrons reach
a new quasiequilibrium with a modified distribution func-
tion n∗

F (E ). The modified Dirac distribution can be modeled
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FIG. 1. (a) Illustration of the acoustic plasmon dispersion in
graphene. Left: Acoustic plasmon dispersion in graphene with no
current bias. Right: Acoustic plasmon dispersion in graphene with
a current bias in the positive x direction. The plasmon dispersion is
illustrated by the red cone, while the teal cone is the onset of the
particle-hole continuum. The acoustic plasmon cone is tilted in the
direction of the applied bias, resulting in the shift of the plasmon
dispersion. Solid circles illustrate the Fermi energy. For compari-
son, we have included the Fermi energy at zero bias as a dashed
line in the right plot. (b) Color map of the loss function S(q, ω) =
[1 − U (q)�(q, ω)]−1 for a graphene-insulator-metal system with an
applied current obtained by numerical integration. The blue shows
a region where gain is achievable. Both the current and the wave
number q are assumed to be in the x direction. Calculations were
made using EF = 0.2 eV, ks = 0.6kF , and κ = 1. Both the acoustic
plasmon for d = 3 Å and the plasmon for d → ∞ are shown. For
comparison we have included the analytical dispersion at zero bias
shown by the green lines.

by shifting the Fermi surface of the biased electrons by an
amount ks = −eτ j/(h̄σ ), where j is the current density, σ is
the conductivity in graphene, and τ is the transport scattering
time [8,9]. Assuming that the current is in the positive x direc-
tion, the Fermi wave number obtains an angular dependence
described by

k∗
F (θ ) = −ks cos θ +

√
k2

F − k2
s sin2 θ, (5)

where we assume ks < kF and θ = θk − θq. An illustration
of the shifted Fermi surface is shown in Fig. 1(a). Assuming
that the Fermi surface is shifted in the positive x direction,

we see that the shifted Fermi surface depletes the electron
concentration in the direction of the current and increases their
concentration in the opposite direction. As we argue below,
this shift of the Drude weight is responsible for the red shift
of the dispersion in the direction of the current.

The plasmon dispersion ω(q) is determined by solving the
equation

1 = U (q)�(q, ω), (6)

where

U (q) = e2

2κε0q
[1 − exp(−2qd )] ≈ e2d

κε0
(7)

is the Coulomb interaction of the graphene-dielectric-metal
system, κ is the dielectric constant of the system, and d is
the thickness of the dielectric layer, and we have used the ap-
proximation qd � 1. In order to obtain analytical results, we
consider the limit vF ks � vF q, and ω � vF kF . In this limit,
the band overlap integral simplifies to fs,s′ (k, q) = 1

2 (1 + ss′),
allowing us to focus only on the intraband contribution. As
we show in the Supplemental Material [27], for q along the x
direction �(q, ω) takes the surprisingly simple form

�(q, ω) = D(EF )[�0 + δ�1 + δ�2], (8)

�0(q, ω) = −
[

1 − cs√
c2

s − 1

]
, (9)

δ�1(q, ω) = ks

kF
cos θq

[
2cs + 1 − 2c2

s√
a2 − 1

]
, (10)

δ�2(q, ω) = 1

2

(
ks

kF

)2[
cos2 θq

(
3

2
− 3c2

s + 3cs

√
c2

s − 1

)
. . .

− sin2 θq

(
1

2
− 3c2

s + 3c3
s − cs√
c2

s − 1

)]
, (11)

where cs = ω/(vF q), and D(EF ) = gsgvEF /[2π (h̄vF )2] is the
density of states in graphene. In Eq. (8) we have included
terms up to second order in ks/kF . Thus we find the acoustic
plasmon dispersion by substituting Eqs. (8)–(11) into Eq. (6).
Expanding cs = cs0 + δcs1 + δcs2 we find

cs0 = 1 + A√
1 + 2A

, (12)

δcs1 = − ks

kF
cos θq

(
c2

s0 − 1
)3/2

⎡
⎣ 2c2

s0 − 1√
c2

s0 − 1
− 2cs0

⎤
⎦, (13)

δcs2 = − 1

2

(
ks

kF

)2(
c2

s0 − 1
)3/2

. . .

×
[

cos2 θq

(
3c2

s0 − 3

2
− 3cs0

√
c2

s0 − 1

)
. . .

− sin2 θq

⎛
⎝1

2
− 3c2

s0 + 3c3
s0 − cs0√
c2

s0 − 1

⎞
⎠

⎤
⎦, (14)

where A = (e2dD(EF ))/κ/ε0, and we have used Eq. (7) in the
limit of small q.

Let us discuss the dispersion defined by Eqs. (12)–(14),
which is plotted in Fig. 2. As we see from Eq. (13), the
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FIG. 2. Dimensionless acoustic plasmon velocity cs as a function
of the shifted Fermi surface center ks for several different values of
EF . Negative values of ks correspond to the q < 0 branch. Inset: The
dimensionless function f (A) ≡ ksc/kF vs the dimensionless parame-
ter A. The range of A is for 0.01 � EF � 0.20 and for the dielectric
constant κ = 3. The dashed line in the inset is the best linear fit.

dependence on cos θq creates a nonreciprocity between the
q < 0 and q > 0 branches. As the current increases, the q >

0 (q < 0) plasmon branch is red shifted (blue shifted) relative
to the zero current value defined in Eq. (12). This effect
creates a particularly interesting situation for acoustic plas-
mons in graphene, as it suggests that there is some ksc above
which cs < 1. Under this condition, the q > 0 plasmon branch
lies entirely in the Landau damping region and is strongly
damped, while the q < 0 branch is very weakly attenuated
[see Fig. 1(a)]. In this regime the plasmon is focused in the
opposite direction of the applied bias. We can solve for ksc

using Eqs. (12)–(14) and define

ksc

kF
= f (A), (15)

where f (A) is a dimensionless function that monotonically
increases with the parameter A. This function is shown as the
inset of Fig. (2) for κ = 3 and EF ranging from 0.01–0.2 eV.

Equation (15) has some important experimental implica-
tions. The wave number ksc defines a critical current

jsc = evF n f (A), (16)

in which the acoustic plasmon focusing occurs. Here n ∝
E2

F is the electron density. By consideration of A ∝ EF /κ ,
Eq. (16) suggests that jsc can be tuned by either changing the
density with an external gate, or changing the dielectric envi-
ronment of the sample. As an example, let us consider what
this means for hBN encapsulated graphene, which has some of
the highest saturation currents measured in graphene. For an
electron density of 7 × 1011 cm−2 and the dielectric constant
κ = 3.29 [28], the critical current density is approximately
800 A/m. This suggests that the focusing of the acoustic
plasmon can be observed at these densities [29].

Let us now compare these results to those obtained by a
numerical calculation of the polarization defined by Eq. (1).

FIG. 3. Ratio of the damping factor γ of the red-shifted (γ−) and
blue-shifted (γ+) plasmon branches for EF = 0.2 eV, ks = 0.6kF ,
and κ = 1.

We first demonstrate the focusing effect by examining the
damping of each branch. We extract a damping factor by a
Lorentzian fit of the loss function at fixed frequency according
to

S(q, ω) = A

(�/2)2 + |q − qplas|2
, (17)

where qplas is the plasmon resonance wave vector. The results
are shown in Fig. 3 as the ratio of the red-shifted (γ−) and
blue-shifted (γ+) damping factors. We see that for the plotted
range, the damping factor is less than 1 indicating that the
plasmon is focused in the opposite direction of the current. To
investigate this focusing further, we show in Fig. 4(a) a slice
of the loss function S(q, θ ) at a fixed frequency h̄ω = 0.5EF

for EF = 100 meV and κ = 3 for ks = 0.9kF . Here we use the
polar coordinates q and θ for describing features of S(q, θ ),
and drop ω from the argument for simplicity of notation.
The particle-hole continuum is illustrated by the dashed black
circle. There are several essential features to notice. First, let
us define the isofrequency contour S(θ ) as the maximum of
S(q, θ ) at a fixed θ . Unlike the zero bias case, it is clear that
the isofrequency contour has shifted due to the bias, and is
no longer circularly symmetric. More importantly, a range of
angles δθ around θ = 0 has crossed into the particle-hole con-
tinuum. The spectral intensity of this region has been nearly
fully depleted. In order to investigate this more thoroughly, we
plot the isofrequency contour S(θ ) in the left plot of Fig. 4(b).
The values are normalized to the maximum value of S(θ ) for
each value of ks separately. We see that as the current bias is
increased, the minimum of S(θ ) decreases and the size of the
depleted region grows, suggesting that as the bias is increased
the acoustic plasmon becomes more focused in the direction
opposing the current. This allows us to define a measure of
the focusing by the range of angles δθ in which the loss
function S(θ ) < max(S(θ ))/γ , where γ is Euler’s constant
and is presented in the right plot of Fig. 4(b). By this criterion,
the acoustic plasmon focusing does not occur until a minimum
value of ks ≈ 0.6kF is applied at this Fermi energy.
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FIG. 4. (a) Temperature plot of the loss function S(q, θ ) for
EF = 100 meV and κ = 3 at a fixed frequency h̄ω = 0.5EF for
ks = 0.9kF . The dashed black line illustrates the boundary of the
particle-hole continuum. The green line shows the angle δθ in which
S(q, θ ) is depleted. (b) Left: Plot of the isofrequency contour S(θ ) for
EF = 100 meV, κ = 3, and h̄ω = 0.5EF at several ks = 0.3kF (blue),
ks = 0.5kF (red), ks = 0.7kF (orange), and ks = 0.9kF . Each line is
normalized to the maximum value of S(θ ) at fixed ks. The dashed line
shows the value we use to define the depletion angle δθ . Right: Plot
of the range δθ of angles around the current bias direction in which
the isofrequency contour S(θ ) is exponentially depleted as function
of the relative shift of the Fermi surface center. Plasmons emitted at
this bias are focused in a range 2π–δθ opposite the applied current
bias.

Let us discuss how these results can be tuned with the (un-
biased) Fermi energy. From the angular dependence of the loss
function, we can define a critical value ksc above which the an-
gle of depletion δθ > π/2. In Fig. 5 we plot ksc vs EF based on
this criterion, along with the associated current obtained from
Eq. (16). At larger EF , there is an approximately linear depen-
dence of ksc on the Fermi energy ksc/kF = MEF + B, with
M = 0.56(eV)−1 and B = 0.6, as shown by the dashed line in
Fig. 5(a). This should be compared with our original analytical
calculation in which M = 1.6(eV)−1 and B = 0.6. We note
that our analytical expression dramatically overestimates the
slope. This is likely due to the difference in the definition
of ksc between the analytical and numerical calculations. The
analytical calculation is determined by the plasmon disper-
sion along the x axis, which is most sensitive to the applied
bias and thus more sensitive to changes in the Fermi energy
and system parameters. At smaller Fermi energies, there is a

FIG. 5. (a) The critical value ksc of the shift of the Fermi surface
center vs the Fermi energy EF (eV ). ksc is defined as the minimum
shift in which the angle of depletion δθ > π/2. The dashed line
is the best linear fit of the large EF dependence, given in the text.
(b) The critical current jsc vs the Fermi energy EF . The values of jsc

are obtained from ksc according to Eq. (16).

sudden increase in the value of ksc. This is likely due to the
large intrinsic broadening of the plasmon peak of S(q, ω) at
smaller Fermi energies. As the Fermi energy is decreased, the
plasmon peak at zero bias is pushed closer to the particle-hole
continuum, eventually having a partial overlap due to the finite
width of the plasmon peak. As the focusing effect is caused by
the red shift of the plasmon dispersion into the particle-hole
continuum with a finite bias, this partial overlap at zero bias
weakens the effect [30].

We briefly comment on the effects of disorder on these re-
sults. For hard scattering centers, the large momentum transfer
makes it possible to couple opposing plasmon modes. It is
reasonable to worry that this coupling would cause significant
damping of the blue-shifted branch, destroying the focusing
effect. However, it has been shown in previous studies that the
main impact of disorder scattering on the plasmon damping
factor is through the coupling of the plasmon to the particle-
hole continuum [31,32]. For moderate disorder this increases
the damping by roughly a factor of 2 and weakens the
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proposed effect. However, with the unprecedented advance-
ment in high-quality graphene heterostructure fabrication,
experimental realization of our predictions in high-quality
factor plasmon in graphene should be within reach.

Before concluding, let us briefly dwell on the region of
Fig. 1(b) in which there is gain, i.e., the region of negative loss.
As we show in Fig. 1(a), the applied bias causes a population
inversion in which there is a concentration of higher-energy
electrons in the direction opposing the current, and lower-
energy empty states in the direction of the current. The driving
of the particles from the high-energy occupied states into the
lower-energy states results in an energy gain in the system,
and has been studied previously in optically pumped systems
[33]. In the systems being studied here, this effect is limited to
large wave numbers and low frequencies, limiting its potential
use [30].

To summarize, we have studied the effects of an ap-
plied current bias on acoustic plasmons in metal-dielectric-
graphene systems. We have shown that for thin dielectric
layers, the applied current bias focuses the acoustic plas-
mons in the direction opposite to the current bias. This
focusing effect can be enhanced by depleting the electron
concentration, or by using a material with a higher dielectric
constant. We emphasize that due to the linear dispersion of
the acoustic plasmons, the focusing effect is spectrally broad,
making it ideal for development of nonreciprocal light-based
devices.

M.S., E.M., and T.L. acknowledge support from the
National Science Foundation under Grant No. NSF/EFRI-
1741660. D.M. acknowledges partial support by the ARO
MURI Award No. W911NF-14-1-0247.

[1] A. F. Koenderink, A. Alu, and A. Polman, Science 348, 516
(2015).

[2] H. Lira, Z. Yu, S. Fan, and M. Lipson, Phys. Rev. Lett. 109,
033901 (2012).

[3] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M.
Weiner, and M. Qi, Science 335, 447 (2012).

[4] D. L. Sounas, C. Caloz, and A. Alu, Nature Commun. 4, 2407
(2013).

[5] T. A. Morgado and M. G. Silveirinha, ACS Photonics 5, 4253
(2018).

[6] T. A. Morgado and M. G. Silveirinha, Phys. Rev. B 102, 075102
(2020).

[7] K. Bliokh, F. J. Rodríguez-Fortuño, A. Bekshaev, Y. Kivshar,
and F. Nori, Opt. Lett. 43, 963 (2018).

[8] M. Sabbaghi, H.-W. Lee, T. Stauber, and K. S. Kim, Phys. Rev.
B 92, 195429 (2015).

[9] D. S. Borgnia, T. V. Phan, and L. S. Levitov, arXiv:1512.09044.
[10] H. Gao, Z. Dong, and L. Levitov, arXiv:1912.13409.
[11] M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).
[12] B. Van Duppen, A. Tomadin, A. N. Grigorenko, and M. Polini,

2D Mater. 3, 015011 (2016).
[13] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418

(2007).
[14] T. Stauber, J. Phys.: Condens. Matter 26, 123201 (2014).
[15] A. Principi, R. Asgari, and M. Polini, Solid State Commun. 151,

1627 (2011).
[16] T. Low and P. Avouris, ACS Nano 8, 1086 (2014).
[17] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8,

318 (2006).
[18] Z. Fei, A. Rodin, G. O. Andreev, W. Bao, A. McLeod, M.

Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez
et al., Nature (London) 487, 82 (2012).

[19] J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri,
F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera,
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I. BIASED ACOUSTIC PLASMON DISPERSION

Here we would like to find an analytical estimate of the graphene acoustic plasmon dispersion in the presence of an
applied current bias. We begin with the polarization defined by Eq. (1) in the main text. We assume that the wave
number q and frequency ω satisfy vF q ∼ ω � vF kF . Under this assumption, the polarization is entirely determined
by the intraband contribution (s = s′ = 1), and the band overlap integral fs,s′(k,q) = 1. After a few simplifications,
it is easy to show that Π(q, ω) can be rewritten as

Π(q, ω) = D(EF )

∫ 2π

0

dθk
2π

I(θk), (1)

I(θ) =
∑
b=±1

∫ Qc(θ)

0

dx
x

x−
√
x2 + y2 + 2byx cos(θ) + bz

, (2)

where as in the main text we use θ = θk− θq, D(EF ) = gsgvEF /[]2π(~vF )2], is the density of states and we have used
the dimensionless variables x = k/kF , y = q/kF , and z = ω/vF kF . We have also introduced the dimensionless shifted
Fermi wave number

Qc(θk) = −xs cos θk +

√
1− x2s sin2 θk, (3)

where xs = ks/kF . The integral in Eq. (2) can be determined through two substitutions. First we make the substitution

x+ by cos(θ) = y|sin(θ)| sinh(s), (4)

which transforms the integral to

q2|sin(θ)|
2

∫ s2

s1

ds
[|sin(θ)| sinh(2s)− 2b cos(θ) cosh(s)]

b(z − y cos(θ))− e−sq|sin(θ)|
, (5)
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where s1 and s2 are the solutions of Eq. (4) for x = 0 and x = Qc respectively. From Eq. (5) we make the second
substitution t = e−s and perform the integration. After a straightforward calculation we find

Π(q, ω) = D(EF )

∫ 2π

0

dθ
∑
b=±1

∑
i=1,5

fi(θ, y, z), (6)

f1(θ, y, z) =
1

4

(
Qc − y −

√
Q2
c + 2bqQc + y2

)
(7)

f2(θ, y, z) =
b

4

(
(z + y cos(θ))− y3 sin2 θ(2z cos θ − y(1 + cos2 θ))

(z − y cos θ)3

)
ln

(
y − bz√

Q2
c + 2byQc cos θ + y2 −Qc − bz

)
(8)

f3(θ, y, z) =
by3 sin2 θ

4(z − y cos θ)3
[
y(1 + cos2 θ)− 2z

]
ln

(
y − by cos θ√

Q2
c + 2byQc + y2 −Qc − by cos θ

)
(9)

f4(θ, y, z) =
1

4

[
2y cos θ

z − y cos θ
− y2 sin2 θ

(z − y cos θ)2

][
y2 sin2 θ

(y − by cos θ)
− y2 sin2 θ√

Q2
c + 2byQc + y2 −Qc − by cos θ

]
(10)

f5(θ, y, z) = − by2 sin2 θ

8(z − y cos θ)

[
y2 sin2 θ

(y − by cos θ)2
− y2 sin2 θ

(
√
Q2
c + 2byQc + y2 −Qc − by cos θ)2

]
(11)

It turns out that the polarization is almost entirely determined by f4 + f5. For the remainder of this note, we work
under this assumption.

Let us first focus on the terms in f4 and f5 that do not depend on the upper bound of the radial integral Qc. We
refer to these terms as f4A and f5A. Summing over the parameter b, we can write

f4A =
y

2

[
2y cos θ

z − y cos θ
− y2 sin2 θ

(z − y cos θ)2

]
, (12)

f5A = − y2 cos(θ)

2(z − y cos(θ))
, (13)

which when added together simplifies to

f4A + f5A ≡ fA =
y

2

[
y cos θ

z − y cos θ
− y2 sin2 θ

(z − y cos θ)2

]
. (14)

It turns out that when integrating over the angle θ, the two terms in Eq. (11) cancel each other exactly.
Let us now return to those terms in f4 and f5 that depend on the upper bound Qc. We refer to these as f4B and

f5B . We assume that xs � y, z � 1. This allows us to expand out the remaining terms using

√
Q2
c + 2byQc cos(θ) + y2 −Qc − by cos(θ) ≈ y2

2Qc
sin2 θ

(
1− b y

qc
cos θ

)
, (15)

which is valid for q � qc ∼ 1. Summing over b and using this expansion, we can write

f4B = −Qc
[

2y cos θ

z − y cos θ
− y2 sin2 θ

(z − y cos θ)2

]
(16)

f5B =
Q2
c

2(z − y cos θ)

[
1

(1− y
Qc

cos θ)2
− 1

(1 + y
Qc

cos θ)2

]
≈ 2yQc cos θ

(z − y cos θ)
. (17)

Combining these expressions, we see that

Π(q, ω) = D(EF )

∫ 2π

0

dθ

2π

Qcy
2 sin2 θ)

(z − y cos θ)2
(18)

We are interested in the plasmon dispersion ω(q) obtained by solving the equation

1 = U(q)Π(q, ω), (19)



3

where U(q) ≈ (e2d/κε0) is the Coulomb interaction in the graphene-dielectric-metal stack. We assume that the
dispersion is linear, i.e. ω = csvF |q| and we solve for the slope cs. Let us assume that qs � 1, and expand the velocity
as cs = cs0 + δcs1 + δcs2, where cs0 is the solution of Eq. (19) with qs = 0, and δcs1(s2) is the first (second) order
correction in qs. To obtain this, we expand Qc in powers of qs. We find

Qc(θ) = 1− xs cos(θ + θq)−
x2s
2

sin2(θ − θq), (20)

Π(q, ω) = D(EF ) [Π0(q, ω) + δΠ1(q, ω) + δΠ2(q, ω)] , (21)

Π0(q, ω) =

∫ 2π

0

dθ

2π

y2 sin2 θ

(z − y cos θ)2
, (22)

Π1(q, ω) = xs

∫ 2π

0

dθ

2π

y2 sin2 θ cos(θ + θq))

(z − y cos(θ))2
, (23)

Π2(q, ω) = −x
2
s

2

∫ 2π

0

dθ

2π

y2 sin2 θ sin2(θ + θq))

(z − y cos(θ))2
. (24)

Performing the integration we find

Π0(q, ω) =

[
cs

c2s − 1
− 1

]
(25)

Π1(q, ω) = xs cos θq

[
2cs +

1− 2c2s√
c2s − 1

]
(26)

Π2(q, ω) =
x2s
2

[
cos2 θq

(
3

2
− 3c2s +

√
c2s − 1

)
− sin2 θq

(
1

2
− 3c2s +

3c3s − cs√
c2s − 1

)]
. (27)

We expand the velocity as cs = cs0 + δcs1 + δcs2. Expanding Eq. (19) we find

cs0 =

√
(1 +A)2

1 + 2A
(28)

δcs1 = −qs cos θq(c
2
s0 − 1)3/2

(
2c2s0 − 1√
c2s0 − 1

− 2cs0

)
(29)

δcs2 = −q
2
s

2
(c2s0 − 1)3/2

[
cos2 θq

(
3c2s0 −

3

2
− 3cs0

√
c2s0 − 1

)
− sin2 θq

(
1

2
− 3c2s +

3c3s − cs√
c2s − 1

)]
(30)


