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ABSTRACT
From a three-dimensional boundary value problem for the time harmonic classical Maxwell equations, we derive the dispersion relation for a
surface wave, the edge plasmon-polariton (EP), which is localized near and propagates along the straight edge of a planar, semi-infinite sheet
with a spatially homogeneous, scalar conductivity. The sheet lies in a uniform and isotropic medium and serves as a model for some two-
dimensional (2D) conducting materials such as the doped monolayer graphene. We formulate a homogeneous system of integral equations
for the electric field tangential to the plane of the sheet. By the Wiener–Hopf method, we convert this system to coupled functional equations
on the real line for the Fourier transforms of the fields in the surface coordinate normal to the edge and solve these equations exactly. The
derived EP dispersion relation smoothly connects two regimes: a low-frequency regime, where the EP wave number, q, can be comparable
to the propagation constant, k0, of the ambient medium, and the nonretarded frequency regime in which ∣q∣ ≫ ∣k0∣. Our analysis indicates
two types of 2D surface plasmon-polaritons on the sheet away from the edge. We extend the formalism to the geometry of two coplanar
sheets.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5128895

I. INTRODUCTION
Research efforts in the design and fabrication of two-dimensional (2D) materials rapidly evolved into a rich field at the crossroads of

physics, chemistry, and materials science and engineering.1,2 Some of these materials, including graphene and black phosphorus, are highly
promising ingredients of nanophotonics at the mid- and near-infrared frequencies.3 These systems may possibly sustain evanescent, fine-scale
electromagnetic waves that are tightly confined to the boundary.4–7 An appealing surface wave is the 2D “bulk” surface plasmon-polariton
(SP), which expresses collective excitations of the electron charge in the 2D plasma.8–10 The SP may exhibit wavelengths much shorter than
those in the ambient dielectric medium and thus may overcome the typical diffraction limit.11,12

Experimental observations suggest that 2D bulk SPs on graphene nanoribbons are accompanied by different short-scale waves, termed
“edge plasmon-polaritons” (EPs), which oscillate rapidly along the edges of the 2D material.13–16 The EP is localized near each edge on the
sheet and may have a wavelength shorter than the one of the accompanying bulk SPs at terahertz frequencies. This EP is intimately related to
the edge magnetoplasmon, which was observed to propagate along the boundary of the electron layer on liquid 4He in the presence of a static
magnetic field.17–19 The aspects of this wave have been studied via linear models for confined 2D electron systems.20–24 To our knowledge,
many studies of the EP are restricted to the nonretarded frequency regime in which the electric field is approximated by the gradient of a
scalar potential (“quasi-electrostatic approach”).5,25

In this paper, we use the time harmonic classical Maxwell equations in three spatial dimensions (3D) in order to formally derive the
dispersion relation of the EP on a semi-infinite, flat sheet with a straight edge and a homogeneous and isotropic surface conductivity. The
sheet lies in a homogeneous and isotropic medium. We formulate a system of integral equations for the electric field tangential to the plane
of the sheet and apply the Wiener–Hopf method to solve these equations exactly via the Fourier transform in the sheet coordinate normal
to the edge. In this sense, our treatment accounts for retardation effects. The EP dispersion relation is derived through the analyticity of the
Fourier-transformed fields.
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Our tasks and results are summarized as follows:

● We formulate a boundary value problem for time harmonic Maxwell’s equations in 3D. An ingredient is a jump condition for the
tangential magnetic field across the sheet with an assumed local and tensor-valued surface conductivity.8,9

● We convert this boundary value problem to a system of coupled integral equations for the electric-field components tangential to the
plane of the sheet. The kernel comes from the retarded Green function for the vector potential.

● We apply the Wiener–Hopf method26–29 when the sheet is spatially homogeneous. In this context, we use the Fourier transform
of the fields in the surface coordinate normal to the edge and convert the integral equations to functional equations on the real
line.

● For isotropic sheets, we formally solve these functional equations exactly via a suitable linear transformation of the tangential electric
field.

● We derive the EP dispersion relation via enforcing the requisite analyticity of the Fourier-transformed fields. The ensuing relation
exhibits the joint contributions of transverse-magnetic (TM) and transverse-electric (TE) field polarizations.

● For a given EP wave number, we describe 2D SPs in the direction vertical to the edge.
● For a fixed phase of the surface conductivity with recourse to the Drude model,10 we derive an asymptotic expansion for the EP wave

number at low enough frequencies. This expansion provides a refined description of the gapless EP energy spectrum.23

● We compare the derived EP dispersion relation to the respective result of the quasi-electrostatic approach.23 We extract the leading-
order correction due to retardation.

● We provide an extension of our analysis to the geometry with two coplanar, semi-infinite sheets of distinct isotropic, spatially
homogeneous surface conductivities.

We should mention the models of hydrodynamic flavor for magnetoplasmons found in Refs. 17, 18, and 20–22. The main idea in
these works is to couple the 2D (non-relativistic) linearized Euler equation with the 3D Poisson equation for an electrostatic potential.
A dispersion relation for the edge magnetoplasmon is then obtained via an ad hoc simplification of the integral relation between the
potential and the electron density; the exact kernel is replaced by a simpler one having the same infrared behavior.17,18,20–22 This treat-
ment offers insights into the effect of the geometry and the relative importance of bulk and edge contributions (see, e.g., Refs. 30–34).
A few limitations of these works, on the other hand, are evident. For instance, the time harmonic electric field is approximately expressed
as the gradient of a scalar potential, which poses a restriction on the magnitude of the EP wave number. Moreover, the simplified
relation between potential and electron density may become questionable, e.g., for the calculation of the EP phase velocity at long
wavelengths.24

Other works of similar hydrodynamic character invoke the nonlocal mapping from the electron density to the potential along the 2D
material and resort to numerics in the context of the quasi-electrostatic approximation.35–37 Note that in Ref. 38, the integral equations for the
oscillation amplitudes of electrons are apparently solved explicitly, without any kernel approximation, yet by the neglect of retardation (see
also Ref. 39). An extension of these treatments to viscous electron flows via the Wiener–Hopf method is found in Ref. 24.

The dispersion relation of edge magnetoplasmons has been systematically derived from an anti-symmetric tensor surface conductivity
via the solution of an integral equation for the electrostatic potential by the Wiener–Hopf method.19,23 In these works, the quasi-electrostatic
approximation is applied from the start. In contrast to Refs. 17–24 and 30–38, we solve the full Maxwell equations here, albeit in isotropic
settings. We address the cases with a single sheet and two coplanar sheets with homogeneous scalar conductivities.

Our approach is motivated by the need to describe the dispersion of plasmon-polaritons in a wide range of frequencies and 2D materials.4
We obtain the EP dispersion relation in the form F (q, ω) = 0, where q is the EP wave number, ω is the frequency, and F is a transcendental
function that, for a given surface conductivity function σ(ω), smoothly connects the nonretarded frequency regime, in which q/ω2

≃ const.,9
and the low-frequency regime, in which q/ω ≃ const. We provide corrections to these leading-order terms by assuming that I σ(ω) > 0; this
condition is consistent with the Drude model for σ(ω).10

In this vein, we analytically show how the EP dispersion relation bears the signatures of both the TM and TE polarizations. In particular,
the contribution of the TE polarization becomes relatively small in the quasi-electrostatic limit for I σ(ω) > 0.

Our work points to several open questions. Our approach, relying on the solution of the full Maxwell equations, does not address the
anisotropic and nonlocal effects in the surface conductivity.5,24 Tensor-valued, spatially constant surface conductivities, in principle, can lead
to challenging systems of Wiener–Hopf integral equations for the electric field.40–42 We also neglect the effect that the edge, as a boundary
of a 2D electron system, has on the conductivity. The geometry of the semi-infinite conducting sheet is not too realistic. The experimentally
appealing case of nanoribbons will be the subject of future work. Since we focus on the analytical aspects of EPs, numerical predictions will be
addressed elsewhere.43

A. Outline
The remainder of this paper is organized as follows: In Sec. II, we summarize our key results for isotropic sheets. In Sec. III, we state the

boundary value problem (Sec. III A) and formulate integral equations for the electric field on a flat sheet in a homogeneous isotropic medium
(Sec. III B). Section IV describes the coupled functional equations for the Fourier transforms of the electric-field components tangential
to a homogeneous sheet. In Sec. V, we use a homogeneous scalar conductivity to obtain decoupled functional equations via a linear field
transformation (Sec. V A) and derive the EP dispersion relation (Sec. V B). In Sec. VI, we compute the tangential electric field and describe
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the 2D bulk SPs in the direction normal to the edge. In Sec. VII, we simplify the EP dispersion at low frequencies. Section VIII focuses on
the asymptotics related to the quasi-electrostatic approximation. In Sec. IX, we extend our analysis to two coplanar isotropic sheets. Section X
concludes this paper with a discussion of open problems.

B. Notation and terminology
In our analysis, C is the complex plane, R is the set of real numbers, and Z is the set of integers. w∗ is the complex conjugate of w (w ∈ C).

Rw (Iw) denotes the real (imaginary) part of complex w. Boldface symbols denote vectors or matrices, e.g., eℓ is the ℓ-directed unit Cartesian
vector (ℓ = x, y, z). The Hermitian part of matrix M is 1

2 (M∗T + M), where the asterisk (∗) and T as superscripts denote complex conjugation
and transposition, respectively. We write f = O(g) ( f = o(g)) to mean that ∣ f /g∣ is bounded by a nonzero constant (approaches zero) in a
prescribed limit, and f ∼ g implies f − g = o(g). The term “sheet” means either a thin film or a Riemann sheet as a branch of a multiple-value
function. The terms “top Riemann sheet” and “first Riemann sheet” are employed interchangeably and similarly for the terms “wave number”
and “propagation constant.” Given a function, F(ξ), of a complex variable, ξ, we define the functions F±(ξ) by F(ξ) = F+(ξ) + F−(ξ), where (i)
F+(ξ) is analytic in the upper half ξ-plane, C+ = {ξ ∈ C : I ξ > 0}; and (ii) F−(ξ) is analytic in the lower half ξ-plane, C− = {ξ ∈ C : I ξ < 0}.
The e−iωt time dependence is used throughout, where ω is the angular frequency, and ω > 0 unless we state otherwise (i2

= −1). We employ
the International System of units (SI units) throughout.

II. MAIN RESULTS
In this section, we summarize our key results regarding isotropic sheets. The derivations can be found in the corresponding sections

(Secs. III–IX) as specified below.
Suppose that the conducting material is the set Σ = {(x, y, z) ∈ R3 : x > 0, z = 0} and has scalar surface conductivity σ(ω) in the frequency

domain. Thus, the material edge is identified with the y-axis. The sheet is surrounded by an isotropic and homogeneous medium. To study the
EP dispersion, suppose that all fields have the eiqy dependence on the y coordinate, where the complex q needs to be determined as a function
of ω.

A. Integral equations for EP electric field tangential to isotropic sheet
The electric field parallel to the plane of the sheet is of the form eiqyE∥(x, z), where E∥(x, z) = (Ẽx(x, z), Ẽy(x, z), 0)T . This E∥(x, z) is

continuous across the sheet. We show that, in the absence of any incident field, E∥(x, z) at z = 0 satisfies

E∥(x, 0) =
iωμσ

k2
0

⎛
⎜
⎜
⎝

d2

dx2 + k2
0 iq

d
dx

iq
d

dx
k2

eff

⎞
⎟
⎟
⎠
∫

∞

0
dx′ K(x − x′; q) E∥(x′, 0), all x in R. (1)

Here, we ignore the (zero) z-component of E∥ and define k0 = ω√εμ, where ε and μ are the dielectric permittivity and magnetic permeability
of the ambient medium, respectively, and k2

eff = k2
0 − q2 with I keff > 0. The kernel is K(x; q) = G(x, 0; 0, 0), where G(x, z; x′, z′) is the retarded

Green function for the scalar Helmholtz equation with the wave number keff. The EP dispersion relation is sought by requiring that (1) admits
nontrivial integrable solutions.

Equation (1) is a particular case of the integral system obtained when the surface conductivity is anisotropic (see Sec. III B). The derivation
of (1) and its extension is described in Sec. III B. In Sec. IV, we use the Fourier transform in x in order to state the respective matrix Riemann–
Hilbert problem.

B. EP dispersion relation for isotropic sheet
Without loss of generality, assume that R q > 0. By (1), the EP dispersion relation is

exp{[Q+(iq) + Q−(−iq)] − [R+(iq) + R−(−iq)]} = −1, (2a)

and for R q < 0, simply replace q by −q in this relation. In the above equation, we define

Q±(ξ) = ±
1

2πi∫
∞

−∞

lnPTM(ξ′)
ξ′ − ξ

dξ′, R±(ξ) = ±
1

2πi∫
∞

−∞

lnPTE(ξ′)
ξ′ − ξ

dξ′, ±I ξ > 0, (2b)

PTM(ξ) = 1 −
iωμσ

k2
0

(k2
eff − ξ2)K̂(ξ; q), PTE(ξ; q) = 1 − iωμσK̂(ξ; q). (2c)

Here, K̂(ξ; q) is the Fourier transform of the kernel K(x; q), and K̂(ξ; q) = (i/2)(k2
eff − ξ2)−1/2 with I

√
k2

eff − ξ2 > 0 for wave decay in ∣z∣. The
derivation of (2a) is provided in Sec. V.
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C. Electric field tangential to plane of sheet near and away from edge
Suppose that q satisfies (2a). By using the ensuing Fourier integrals for the components of E∥(x, 0), we show that ex . E∥(x, 0) is singular

at the edge, viz.,

ex ⋅ E∥(x, 0) = O(
√

k0x) as x ↓ 0 and ex ⋅ E∥(x, 0) = O((k0x)−1/2) as x ↑ 0,

whereas ey ⋅ E∥(x, 0) is continuous and finite at the edge. For the derivations, see Sec. VI A.
For the far field on the sheet (as x → +∞ for z = 0), we write E∥ = Esp

∥
+ Erad
∥

; Esp
∥

amounts to a 2D bulk SP as the residue contribution

to the Fourier integrals from a zero of PTM(ξ) or PTE(ξ), whereas Erad
∥

is the branch cut contribution. We derive the asymptotic formulas for
Erad
∥

(x, 0) and the exact formulas for Esp
∥

(x, 0) for x > 0. For example, we find that

∣Erad
∥

(x, 0)∣ = O
⎛
⎜
⎝

e−
√

q2−k2
0 x

(
√

q2 − k2
0x)3/2

⎞
⎟
⎠

as ∣
√

q2 − k2
0 x∣ → +∞,

keeping q/k0 and ωμσ/k0 fixed. For details, see Sec. VI B. In a similar vein, we have

∣Esp
∥

(x, 0)∣ = O(eikspx
),

where, for a lossless ambient medium (k0 > 0), ksp is the zero in the upper half ξ-plane of PTM(ξ) if I σ > 0 or PTE(ξ) if I σ < 0 (see
Sec. VI B).

D. Approximation for EP dispersion relation at low frequency
If ∣ωμσ(ω)/k0∣ ≫ 1 along with I σ(ω) > 0, we show that (2a) yields the approximation

q − k0

k0
∼

ϵ2

2π2 A(ϵ)2, where eA(ϵ)
=

2eπ
ϵ2A(ϵ)

, ϵ =
i 2k0

ωμσ
(∣ϵ∣ ≪ 1)

(for details, see Sec. VII). In view of the semi-classical Drude model10 for σ(ω), the above asymptotic formula indicates how q approaches k0
at a low enough frequency, ω.

E. EP dispersion relation in nonretarded regime
In the nonretarded frequency regime, when ∣ωμσ(ω)/k0∣ ≪ 1 with I σ(ω) > 0,9,10 the EP dispersion relation can be derived by the quasi-

electrostatic approach.19,23,25 By carrying out an asymptotic expansion for exact result (2a), we derive the following formula:

q ∼ iη0
2k2

0

ωμσ
{1 − η1(

ωμσ
2k0
)

2
}.

In the above equation, η0 is a numerical factor (η0 ≃ 1.217) that amounts to the result of the quasi-electrostatic approximation,23 and η1 is a
positive constant (η1 ≃ 0.416) that signifies the leading-order correction due to retardation (see Sec. VIII).

F. Extension of EP theory to two coplanar conducting sheets
Consider the coplanar sheets described by the sets ΣL

= {(x, y, z) ∈ R3 : z = 0, x < 0} and ΣR
= {(x, y, z) ∈ R3 : z = 0, x > 0}, which lie

in an isotropic homogeneous medium. Suppose that their scalar, spatially constant conductivities are σL and σR, respectively (σL
≠ σR and

σLσR
≠ 0). The electric field tangential to the sheets in Σ = ΣL

∪ ΣR satisfies

E∥(x, 0) =
iωμ
k2

0

⎛
⎜
⎜
⎝

d2

dx2 + k2
0 iq

d
dx

iq
d

dx
k2

eff

⎞
⎟
⎟
⎠
∫

∞

−∞

dx′ K(x − x′; q)σ(x′) E∥(x′, 0), all x in R,

where σ(x) = σL + ϑ(x)(σR
− σL); ϑ(x) = 1 if x > 0 and ϑ(x) = 0 if x < 0 (see Sec. IX).

We show that the equation for E∥(x, 0) admits nontrivial integrable solutions if q obeys (2a) with definitions (2b) for Q±(ξ) and R±(ξ).
However, in the latter formulas, one should make the replacement Pϖ(ξ)→ PR

ϖ(ξ)/PL
ϖ(ξ), where Pℓ

ϖ(ξ) is defined by (2c) with σ → σℓ

(ϖ = TM, TE and ℓ = R, L) (see Sec. IX for more details).
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III. BOUNDARY VALUE PROBLEM AND INTEGRAL EQUATIONS
In this section, we formulate a boundary value problem for time harmonic Maxwell’s equations in the geometry with a semi-infinite

conducting sheet in an unbounded, isotropic, and homogeneous medium. We also derive a system of integral equations for the electric field
tangential to the plane of the sheet. Our formulation includes nonhomogeneous and anisotropic sheets with local surface conductivities; a
generalization is provided in Ref. 25.

A. Geometry and boundary value problem
The geometry of the problem is depicted in Fig. 1. This consists of a semi-infinite conducting sheet, Σ = {(x, y, z) ∈ R3 : x > 0, z = 0},

in the xy-plane and the surrounding unbounded, homogeneous, and isotropic medium. The sheet, Σ, has the local and, in principle, tensor-
valued surface conductivity, σΣ, which may depend on coordinates x, y and the frequency, ω. Thus, allowing σΣ to act on vectors in R3, we use
the matrix representation

σΣ
=
⎛
⎜
⎝

σxx σxy 0
σyx σyy 0
0 0 0

⎞
⎟
⎠

,

where matrix elements σℓm (ℓ, m = x, y) are, in principle, complex-valued functions of x, y, and ω (however, in Sec. III B, σΣ is not allowed
to depend on y). The ambient space has a constant dielectric permittivity, ε, and a constant magnetic permeability, μ. For non-active 2D
materials, the Hermitian part of this σΣ must be positive semidefinite; σΣ must also obey the Onsager reciprocity relations.44,45 We note in
passing that by causality, σΣ(ω) must be analytic in the upper ω-plane (for Iω > 0), if ω becomes complex.

The curl laws of the time harmonic Maxwell equations outside the sheet Σ read

∇× E = iωB, ∇× (μ−1B) = −iωεE + Je in R3
/Σ, Σ ∶= {(x, y, z) : x ≥ 0, z = 0}. (3)

Here, E and B are the electric and magnetic fields, respectively, and Je is the compactly supported current density of an external source. On Σ,
we impose the boundary conditions46

[ez × E]Σ = 0, [ez × B]Σ = μJ on Σ. (4a)

Here, [Q]Σ ∶= Q(x, y, z = 0+) −Q(x, y, z = 0−) for x > 0, which denotes the jump of Q(x, y, z) across Σ, and J on Σ is the vector-valued surface
flux induced on the sheet, viz.,

J(x, y) = σΣ E(x, y, z) = (σxxEx + σxyEy)ex + (σyxEx + σyyEy)ey for z = 0, x > 0. (4b)

We set J(x, y) ≡ 0 if x < 0. More generally, J can be a linear functional of E at z = 0.25

We alert the reader that (3) and (4a) introduce the volume current density, Je, as distinct from the induced surface current density, J, on
Σ. This distinction is justified, if the domain of Maxwell’s equations is R3

/Σ, and highlights the different physical origins of the two current
densities. An alternate yet mathematically equivalent view, which we adopt for convenience in Sec. III B, is to extend the domain of Maxwell’s
laws to the whole Euclidean space and include J in their source term by treating it as a distribution (by use of a delta function in z).

We now discuss a suitable far-field condition.47–49 To determine the EP dispersion relation, we will set Je = 0 and solve the ensuing
homogeneous boundary value problem by assuming that the solution is a wave, the EP, that travels along and remains localized near the
y-axis (Sec. III B). In this setting, the imposition of an outgoing wave in the ±z-directions in addition to having an exponentially decaying and

FIG. 1. Geometry of the problem. A semi-infinite conducting sheet, Σ, lies in the xy-plane for x > 0 and has the local and, in principle, tensor-valued surface conductivity σΣ.
The sheet is surrounded by a homogeneous and isotropic medium of wave number k0 = ω√εμ, where ε is the dielectric permittivity and μ is the magnetic permeability.
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outgoing wave in the y-direction may yield a solution that is exponentially increasing with ∣z∣, similarly to the problem of the infinitely long
microstrip.49 We will therefore consider solutions that decay exponentially in the directions perpendicular to the sheet. An implication of this
assumption is outlined in the end of Sec. IV.

B. Edge plasmon-polariton and integral equations for tangential electric field
Next, we derive integral equations for Ex and Ey at z = 0 by introducing the EP as a particular solution. We assume that the surface

conductivity, σΣ, is independent of y and the fields are traveling waves in the y-direction; the related wave number is to be determined.
We invoke the vector potential, Asc, of the scattered field (Esc, Bsc) in the Lorenz gauge. The Asc, of course, satisfies Bsc

= ∇ × Asc outside
Σ. Our derivation of integral equations for the electric field here is akin to the derivation of the Pocklington integral equation for electric
currents on thin cylindrical antennas in uniform media.50 Our integral formalism is a particular case of the “electric-field integral equation”
approach in electromagnetics.51

To account for the EP, we consider fields of the form F(x, y, z) = eiqyF̃(x, z; q) and replace ∇ by (∂x, iq,∂z), where q is a complex wave
number to be determined and F = E, B, Asc,J, Je. Now, drop the tildes from all respective variables, which depend on x or z, for ease of
notation. This procedure amounts to taking the Fourier transform of Maxwell’s equations and the boundary conditions with respect to y
(where q is the “dual variable”).

By (3) and (4a), Asc is due to the electron flow on the sheet and, thus, obeys the following nonhomogeneous Helmholtz equation
on R2,

(Δx,z + k2
0 − q2)Asc(x, z) = −μJ(x) δ(z) for all (x, z) in R2,

where δ(z) is the Dirac delta function and Δx,z is the 2D Laplacian (Δx,z = ∂
2
/∂x2 + ∂2

/∂z2). The vector potential Asc(x, z) is given in terms of
the surface current, J(x), by47

Asc(x, z) = μ∫R
G(x, z; x′, 0)J(x′) dx′ in R2

/Σ2, (5a)

where Σ2 ∶= {(x, z) ∈ R2 : x ≥ 0, z = 0} and G(x, z; x′, z′) is given by

G(x, z; x′, z′) =
i
4

H(1)
0 (keff

√
(x − x′)2 + (z − z′)2), keff ∶=

√

k2
0 − q2, I keff > 0, (5b)

using the first-kind Hankel function, H(1)
0 (w), of the zeroth order.52 This G comes from the (retarded) Green function for the scalar Helmholtz

equation with effective wave number keff. Note that by (5a), Asc(x, z) is continuous everywhere,48 and Asc
= Asc

x ex + Asc
y ey, where each

component Asc
ℓ = eℓ ⋅ Asc is determined by eℓ ⋅J at z = 0 (ℓ = x, y). We compute

Bsc
x (x, z) = −

∂Asc
y

∂z
, Bsc

y (x, z) =
∂Asc

x

∂z
, Bsc

z (x, z) =
∂Asc

y

∂x
− iqAsc

x in R2
/Σ2.

Hence, by the Ampère–Maxwell law from (3), we find the field components (defined in R2
/Σ2)

Esc
x (x, z) =

iω
k2

0
{(

∂2

∂x2 + k2
0)Asc

x + iq
∂Asc

y

∂x
}, Esc

y (x, z) =
iω
k2

0
(iq

∂Asc
x

∂x
+ k2

effA
sc
y ),

which are continuous across the half line Σ2 ∶= {(x, z) ∈ R2 : x > 0, z = 0}, the projection of the physical sheet on the xz-plane. Thus, Esc
x and

Esc
y obey the first condition in (4a). One can verify that (Esc, Bsc) satisfies Faraday’s law in (3) and the second condition in (4a).

To obtain the desired integral equations for Ex and Ey, we use (5a). Thus, we find

Esc
x (x, z) =

iωμ
k2

0
{(

∂2

∂x2 + k2
0)∫

∞

0
G(x, z; x′, 0) [σxxEx(x′, 0) + σxyEy(x′, 0)] dx′

+iq
∂

∂x∫
∞

0
G(x, z; x′, 0) [σyxEx(x′, 0) + σyyEy(x′, 0)] dx′},

Esc
y (x, z) =

iωμ
k2

0
{iq

∂

∂x∫
∞

0
G(x, z; x′, 0) [σxxEx(x′, 0) + σxyEy(x′, 0)] dx′

+k2
eff∫

∞

0
G(x, z; x′, 0) [σyxEx(x′, 0) + σyyEy(x′, 0)] dx′} in R2

/Σ2.

In these expressions, we take the limit z → 0 for x ≠ 0.48 In the absence of any external source, when Je ≡ 0, we have (Esc
x , Esc

y ) = (Ex, Ey). For
ease of notation, define
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u(x) ∶= Ex(x, 0), v(x) ∶= Ey(x, 0), K(x; q) ∶= G(x, 0; 0, 0) = (i/4)H(1)
0 (keff∣x∣). (6)

The resulting system of (homogeneous) integral equations reads as follows:

u(x) =
iωμ
k2

0
{(

d2

dx2 + k2
0)∫

∞

0
dx′ K(x − x′; q) [σxxu(x′) + σxyv(x′)]

+iq
d

dx∫
∞

0
dx′ K(x − x′; q) [σyxu(x′) + σyyv(x′)]}, (7a)

v(x) =
iωμ
k2

0
{iq

d
dx∫

∞

0
dx′ K(x − x′; q) [σxxu(x′) + σxyv(x′)]

+k2
eff∫

∞

0
dx′ K(x − x′; q) [σyxu(x′) + σyyv(x′)]}, all x in R/{0}. (7b)

Let us now formally extend the domain of these equations to the whole R. We have

(
u(x)
v(x)) =

iωμ
k2

0

⎛
⎜
⎜
⎝

d2

dx2 + k2
0 iq

d
dx

iq
d

dx
k2

eff

⎞
⎟
⎟
⎠
∫

∞

0
dx′ K(x − x′; q) σΣ

2 (
u(x′)
v(x′)), all x in R, (8a)

where

σΣ
2 ∶= (

σxx σxy
σyx σyy

). (8b)

Note that this σΣ
2 may depend on the coordinate x′. For a generalization of (8a) to 2D materials in which the induced surface current

density is a linear functional of (u(x), v(x)), see Ref. 25. The problem is to find q so that the matrix equation (8a) admits nontrivial
solutions.

The right-hand side of (8a) involves the field components tangential to the physical sheet for x′ > 0 under the integral sign. Strictly
speaking, (8a) yields a system of integral equations for u(x) and v(x) by restriction of both sides of this equation to x > 0. By solving these
equations for an isotropic sheet, we will verify that any nontrivial, admissible electric-field component u(x), which is normal to the edge, is
singular and discontinuous at x = 0 (Sec. V). In contrast, v(x) turns out to be continuous at x = 0 (Sec. V).

We can state a more precise definition of the EP (cf. Refs. 17 and 23).

Definition 1 (Edge plasmon-polariton). The EP amounts to the nontrivial integrable solutions (u, v) and the corresponding wave number,
q, of (8a) (u, v ∈ L1(R)). The EP dispersion relation describes how the q of this solution is related to the angular frequency, ω.

An assumption underlying Definition 1 is that nontrivial integrable solutions u(x) and v(x) of (8a), and the corresponding q’s, exist for
some range of frequencies ω, given some meaningful model for the surface conductivity σΣ

2 . We will construct such solutions by using the
Wiener–Hopf method for the simplified model with σΣ

2 = σI2, where I2 is the 2 × 2 unit matrix and σ is a spatially constant but ω-dependent
scalar quantity (see Secs. IV and V).

IV. HOMOGENEOUS SHEET: COUPLED FUNCTIONAL EQUATIONS
In this section, we reduce (8a) to a system of functional equations on the real line for Fourier-transformed fields via the Wiener–Hopf

method,26,29 if

σxx, σxy, σyx, σyy are spatially constant.

Equation (8a) is recast to the system

(
u(x)
v(x)) =

iωμ
k2

0

⎛
⎜
⎜
⎝

d2

dx2 + k2
0 iq

d
dx

iq
d

dx
k2

eff

⎞
⎟
⎟
⎠

σΣ
2 ∫

∞

−∞

dx′ K(x − x′; q)(u>(x′)
v>(x′)), x in R, (9a)

where

(
u>(x)
v>(x)) ∶= (

u(x)
v(x)) if x > 0, (

u>(x)
v>(x)) ≡ 0 if x < 0. (9b)
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Furthermore, we define the functions u<(x) and v<(x) via the relations u(x) = u>(x) + u<(x) and v(x) = v>(x) + v<(x) for all x in R/{0}.
The Fourier transform of f (x), with f ∈ L1(R), is

f̂ (ξ) = ∫
∞

−∞

dx f (x)e−iξx.

Hence, if f (x) ≡ 0 for x < 0, then f̂ (ξ) is analytic in the lower half ξ-plane, C−, whereas f̂ (ξ) is analytic in the upper half plane, C+, if f (x) ≡ 0
for x > 0.26,28,53

The application of the Fourier transform in x to (9a) yields the system

(
û+(ξ)
v̂+(ξ)) + (û−(ξ)

v̂−(ξ)) =
iωμ
k2

0
K̂(ξ; q)(k2

0 − ξ2 (iq)(iξ)
(iq)(iξ) k2

0 − q2)σΣ
2 (

û−(ξ)
v̂−(ξ)), all ξ in R, (10a)

which describes two coupled functional equations on the real line. In the above equation, we have

K̂(ξ; q) = ∫
∞

−∞

dx K(x; q) e−iξx
=

i
2

(k2
eff − ξ2)−1/2, keff =

√

k2
0 − q2, (10b)

where I
√

k2
eff − ξ2 > 0 since we impose the decay of Ĝ(ξ, z; 0, 0) with I keff > 0 as ∣z∣ → ∞ [see (5b)]. With this choice of the top Riemann sheet,

K̂(ξ; q) is an even function of ξ. Note that the requisite branch cuts, which emanate from ξ = ±keff = ±
√

k2
0 − q2 (I keff > 0), lie in C± and are

infinite and symmetric with respect to the origin. We also define

(
û±(ξ)
v̂±(ξ)) = ∫

∞

−∞

dx (
u <
>

(x)
v <
>

(x))e−iξx. (10c)

Of course, û±(ξ) and v̂±(ξ) depend on q; for ease of notation, we suppress this dependence.
Two comments are in order. First, û±(ξ) and v̂±(ξ) for real ξ are viewed as the limits of the corresponding analytic functions as ξ

approaches the real axis from C+ or C−. Thus, (10a) expresses a Riemann–Hilbert problem on the real line. This type of problem, and the
respective matrix Wiener–Hopf integral equation associated with it, can be solved explicitly, with the solution in a simple closed form, only
in a limited number of cases (see, e.g., Refs. 40–42). We will solve (10a) explicitly for the special case with a scalar constant conductivity, i.e.,
if σΣ

2 = σI2, where σ is a scalar constant in x and y and I2 = diag(1, 1) (Sec. V). Second, recall that we impose I
√

k2
eff − ξ2 > 0 with I keff > 0 in

the ξ-plane. Suppose for a moment that R q > 0 and I q > 0, i.e., the EP is an outgoing and decaying wave in the positive y-direction; then,
I k2

eff = I(k2
0 − q2) < 0, if the ambient medium is lossless (k0 > 0). Hence, the condition R keff < 0 must be satisfied, given that I keff > 0. By the

prescribed choice of the branch cut for
√

k2
eff − ξ2 and the respective integration path in the ξ-plane, we conclude that R

√
k2

eff − ξ2 < 0 (cf.
Ref. 49). The sign reversal of R q, i.e., the mapping q↦ −q∗, causes the sign change of R

√
k2

eff − ξ2.

V. EDGE PLASMON ON ISOTROPIC HOMOGENEOUS SHEET
In this section, we restrict our attention to the case with an isotropic and homogeneous conducting sheet. Hence, we set

σΣ
2 = σ I2,

where σ is a scalar function of ω with R σ(ω) ≥ 0. We will explicitly solve (10a) via a suitable transformation of (û±(ξ), v̂±(ξ)) and subsequent
factorizations in the ξ-plane.26,40

Equation (10a) is recast to the system

(
û+(ξ)
v̂+(ξ)) + (û−(ξ)

v̂−(ξ)) =
iωμσ

k2
0

K̂(ξ; q)(k2
0 − ξ2 (iq)(iξ)

(iq)(iξ) k2
0 − q2)(

û−(ξ)
v̂−(ξ)) (all real ξ).

Now, define the matrix

Λ(ξ; q) ∶=
⎛
⎜
⎜
⎜
⎝

1 −
iωμσ

k2
0

(k2
0 − ξ2)K̂(ξ; q) −

iωμσ
k2

0
(iq)(iξ)K̂(ξ; q)

−
iωμσ

k2
0

(iq)(iξ)K̂(ξ; q) 1 −
iωμσ

k2
0

(k2
0 − q2)K̂(ξ; q)

⎞
⎟
⎟
⎟
⎠

. (11a)

Accordingly, the functional equations under consideration are expressed by

Λ(ξ; q)(û−(ξ)
v̂−(ξ)) + (û+(ξ)

v̂+(ξ)) = 0 (all real ξ). (11b)
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A. Linear transformation and explicit solution
The key observation is that in the present setting, we can explicitly define a matrix valued function, T(ξ; q), such that the transformed

vector-valued function,

(
U(ξ)
V(ξ)) ∶= T(ξ; q)(û(ξ)

v̂(ξ)), (12)

has the following properties: (i) (Us(ξ), Vs(ξ))T
= T(ξ; q)(ûs(ξ), v̂s(ξ))T , where the superscript T denotes transposition and s = ±; and (ii) the

components Us(ξ) and V s(ξ) separately satisfy two (decoupled) functional equations on the real axis. The first property [item (i)] directly
follows from (12) if each matrix element in T(ξ; q) is an entire function of ξ.

To this end, we diagonalize Λ(ξ; q). Consider an invertible matrix S such that

Λ(ξ; q) = S(ξ; q) diag (P1(ξ; q),P2(ξ; q))S−1(ξ; q) (ξ ∈ C),

where Pj(ξ; q) are eigenvalues of Λ(ξ; q) (j = 1, 2). The associated eigenvalues satisfy

P2
− {2 −

iωμσ
k2

0
(2k2

0 − q2
− ξ2)K̂(ξ; q)}P + 1 −

iωμσ
k2

0
(2k2

0 − q2
− ξ2)K̂(ξ; q)

+ (
iωμσ

k0
)

2
(k2

eff − ξ2) K̂(ξ; q)2
= 0,

which has the distinct solutions

P1 = PTM(ξ; q) ∶= 1 −
iωμσ

k2
0

(k2
eff − ξ2)K̂(ξ; q), P2 = PTE(ξ; q) ∶= 1 − iωμσK̂(ξ; q), (13)

where keff =
√

k2
0 − q2 and K̂(ξ; q) is defined by (10b). Note that PTM(±iq; q) = PTE(±iq; q).

We will show how the contributions from PTM and PTE enter the EP dispersion relation (Sec. V B). In regard to these eigenvalues, PTM
corresponds to TM polarization, while PTE amounts to TE polarization. This terminology is motivated as follows: The roots ξ of PTM(ξ; 0) = 0
or PTE(ξ; 0) = 0 provide the propagation constants in the x-direction for the TM- or TE-polarized SP on the respective infinite 2D conducting
material with q = 0.8,9,54 Alternatively, by replacing ξ by

√
q2

x + q2
y in these roots, where qℓ is the wave number in the ℓ-direction (ℓ = x, y), and

solving for ω(qx, qy), one recovers the continuum energy spectrum of the TM- or TE-polarized SP on the infinite sheet.5,9 The roots ξ for each
case are present in the top Riemann sheet under suitable conditions on the phase of σ (see Sec. VI B).8,9,54,55

By an elementary calculation, the eigenvectors of Λ(ξ; q) are given by

(
iξ
iq) for P = PTM and (

iq
−iξ) for P = PTE,

which depend on the material parameters through q if the latter satisfies a dispersion relation. Hence, the matrix S can be taken to be
equal to

S(ξ; q) = (iξ iq
iq −iξ), (14)

which is an entire matrix valued function of ξ and invertible for all complex ξ with ξ ≠ ±iq. Once we compute S−1
= −(ξ2 + q2)−1S, we

write

Λ(ξ; q) = −
1

q2 + ξ2 S(ξ; q)(PTM(ξ; q) 0
0 PTE(ξ; q))S(ξ; q).

Accordingly, by (11b), we obtain the expression

(
PTM(ξ; q) 0

0 PTE(ξ; q))S(ξ; q)(û−(ξ)
v̂−(ξ)) + S(ξ; q)(û+(ξ)

v̂+(ξ)) = 0 (all real ξ).

Thus, by recourse to (12), we can set
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T(ξ; q) = S(ξ; q) = (iξ iq
iq −iξ).

This choice implies the transformation (û, v̂)↦ (U, V) with

U(ξ) = iξ û(ξ) + iq v̂(ξ), V(ξ) = iq û(ξ) − iξ v̂(ξ). (15)

Evidently, (U±(ξ), V±(ξ))T may result from the application of T(ξ; q) to (û±(ξ), v̂±(ξ))T .

Remark 1 (On the transformation for û and v̂). Equations (15) represent the Fourier tranforms with respect to x of −∂Ez(x, z)/∂z
= ∂Ex/∂x + iqEy and −iωBz(x, z) = iqEx(x, z) − ∂Ey/∂x at z = 0 by omission of any boundary terms for Ex(x, 0) and Ey(x, 0) (as x → 0). This
absence of boundary terms is consistent with the presence of a non-integrable singularity of ∂Ex/∂x and the continuity of Ey(x, z) as x → 0 at
z = 0 (Sec. VI).

We return to the task of computing û(ξ) and v̂(ξ). The functions U±(ξ) and V±(ξ) obey

PTM(ξ; q)U−(ξ) + U+(ξ) = 0, (16a)
PTE(ξ; q)V−(ξ) + V+(ξ) = 0 for all ξ in R. (16b)

Hence, loosely speaking, the contributions from the TE- and TM-polarizations are now decoupled. Our goal is to solve (16) explicitly (Sec. V B)
and then account for transformation (15) in order to obtain q as well as the corresponding nontrivial û±(ξ) and v̂±(ξ).

We should alert the reader that the approach of matrix diagonalization, which we apply above, is tailored to the present isotropic model
of the surface conductivity. This approach is, in principle, not suitable for a strictly anisotropic conductivity in functional equations (10). This
limitation can be attributed to the ensuing analytic structure of the matrix S(ξ; q).

B. Derivation of EP dispersion relation
Let us assume that for all admissible q, the functions PTM(ξ; q) and PTE(ξ; q) satisfy

PTM(ξ; q) ≠ 0 and PTE(ξ; q) ≠ 0 for all real ξ.

Hence, the functions lnPTM(ξ) and lnPTE(ξ), which we invoke below, are analytic in the vicinity of the real axis in the ξ-plane. The above
conditions imply that the respective bulk SPs, for fixed q, do not have real propagation constants in the first Riemann sheet (I

√
k2

0 − q2 − ξ2

> 0). To simplify the notation, we henceforth suppress the q-dependence in quantities such as PTM and PTE.
In order to solve (16), we need to carry out factorizations of PTM(ξ) and PTE(ξ), i.e., determine “split functions” Q±(ξ) and R±(ξ) such

that26

Q(ξ) ∶= lnPTM(ξ) = Q+(ξ) + Q−(ξ), R(ξ) ∶= lnPTE(ξ) = R+(ξ) + R−(ξ), (17)

which is a classic problem in complex analysis. The EP dispersion relation will be expressed in terms of functions Q± and R±. Note that Q(ξ)
and R(ξ) are even functions in the top Riemann sheet.

It is useful to introduce the (vector-valued) index, ν, for functional equations (16). This ν expresses the indices associated with PTM(ξ)
and PTE(ξ) on the real axis, viz.,26,29

ν ∶=
1

2πi
lim

M→+∞∫

M

−M
(
{P′TM(ξ)/PTM(ξ)}
{P′TE(ξ)/PTE(ξ)}) dξ =

1
2π

lim
M→+∞

(
argPTM(ξ)
argPTE(ξ))∣

M

ξ=−M
,

where the prime here denotes differentiation with respect to the Fourier variable ξ. The components of this ν express the changes in the values
for (2πi)−1 lnPTM(ξ) and (2πi)−1 lnPTE(ξ) as ξ moves between the extremities of the real axis. Thus, each component of ν is the winding
number with respect to the origin of a contour, Cϖ

0 , in the complex Pϖ-plane under the mapping ξ ↦ Pϖ(ξ), which maps the real axis to Cϖ
0

(ϖ = TM or TE).
Because PTM(ξ) and PTE(ξ) are even functions of ξ, we can assert that

ν = 0, (18)

which implies that splitting (17) makes sense and can be carried out directly via the Cauchy integral formula.26,55 In contrast, for certain
strictly anisotropic conducting sheets, the index for the underlying Wiener–Hopf integral equations in the quasi-electrostatic approach may
be nonzero, which implies distinct possibilities regarding the existence, or lack thereof, of the EP.23,25 This material anisotropy lies beyond the
scope of this paper.
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Therefore, we can directly apply the Cauchy integral formula and obtain26,55

Q±(ξ) = ±
1

2πi∫
∞

−∞

Q(ξ′)
ξ′ − ξ

dξ′ = ±
ξ
iπ∫

∞

0

Q(ξ′)
ξ′2 − ξ2

dξ′, (19a)

R±(ξ) = ±
1

2πi∫
∞

−∞

R(ξ′)
ξ′ − ξ

dξ′ = ±
ξ
iπ∫

∞

−∞

R(ξ′)
ξ′2 − ξ2

dξ′ (±I ξ > 0) (19b)

in view of definitions (17). Equations (16) then read

eQ−(ξ)U−(ξ) = −e−Q+(ξ)U+(ξ), eR−(ξ)V−(ξ) = −e−R+(ξ)V+(ξ) for all ξ in R.

By analytic continuation of each side of the above equations to complex ξ in C+ or C−, we infer that there exist entire functions Ej(ξ) (j = 1, 2)
such that26

eQ−(ξ)U−(ξ) = −e−Q+(ξ)U+(ξ) = E1(ξ), (20a)

eR−(ξ)V−(ξ) = −e−R+(ξ)V+(ξ) = E2(ξ) for all ξ in C. (20b)

Each of these Ej(ξ) can be determined by the examination of Q±(ξ), R±(ξ), U±(ξ), and V±(ξ) as ξ →∞ in C+ or C−. It is compelling to
consider only polynomials as candidates for Ej(ξ).

Let us now discuss in detail the issue of determining Ej(ξ). Recall that the electric-field components Ex(x, 0) and Ey(x, 0) are assumed to
be integrable on R. Hence, û±(ξ)→ 0 and v̂±(ξ)→ 0 as ξ →∞ in C±.28,53 By transformation (15), we infer that

U±(ξ), V±(ξ) cannot grow as fast as ξ

in the limit ξ →∞ in C±. To express this behavior, we write ∣U±(ξ)∣ < O(ξ) and ∣V±(ξ)∣ < O(ξ) as ξ →∞ in C±. Now consider the asymptotics
for Q±(ξ) and R±(ξ) when ∣ξ∣ is large (see the Appendix). We can assert that

eQ±(ξ)
= O(
√

ξ) and eR±(ξ)
→ 1 as ξ →∞ in C±.

These estimates imply that

∣eQ−(ξ)U−(ξ)∣ < O(ξ
√

ξ) and ∣e−Q+(ξ)U+(ξ)∣ < O(
√

ξ) as ξ →∞

in C− and C+, respectively. In a similar vein, we have

∣e∓R±(ξ)V±(ξ)∣ < O(ξ) as ξ →∞ in C±.

Hence, we find that the entire functions E1(ξ) and E2(ξ) satisfy

E1(ξ) < O(
√

ξ) and E2(ξ) < O(ξ) as ξ →∞ in C.

Thus, resorting to Liouville’s theorem, we conclude that

E1(ξ) = C1 = const. and E2(ξ) = C2 = const. for all ξ ∈ C. (21)

These constants, C1 and C2, have units of electric field and are both arbitrary so far.
We proceed to determine û±(ξ) and v̂±(ξ) in terms of C1 and C2 and then obtain the EP dispersion relation. Equations (20a) and (21)

lead to

U±(ξ) = ∓C1e±Q±(ξ), V±(ξ) = ∓C2e±R±(ξ).

In view of transformation (15), we readily obtain the formulas

û−(ξ) = −
iξ U−(ξ) + iq V−(ξ)

q2 + ξ2 = −
iξ C1e−Q−(ξ) + iq C2e−R−(ξ)

q2 + ξ2 , (22a)

v̂−(ξ) = −
iq U−(ξ) − iξ V−(ξ)

q2 + ξ2 = −
iq C1e−Q−(ξ)

− iξ C2e−R−(ξ)

q2 + ξ2 (22b)

for the fields u>(x) and v>(x), along with the formulas
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û+(ξ) = −
iξ U+(ξ) + iq V+(ξ)

q2 + ξ2 =
iξ C1eQ+(ξ) + iq C2eR+(ξ)

q2 + ξ2 , (23a)

v̂+(ξ) = −
iq U+(ξ) − iξ V+(ξ)

q2 + ξ2 =
iq C1eQ+(ξ)

− iξ C2eR+(ξ)

q2 + ξ2 (23b)

in regard to u<(x) and v<(x). Note the appearance of the factor (ξ2 + q2)−1.
Now define

sg(q) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1 if R q > 0,

−1 if R q < 0,

which is the signum function for R q. Since û−(ξ) and v̂−(ξ) are analytic in C−, by (22), we impose the conditions that iξ C1e−Q−(ξ)

+ iq C2e−R−(ξ)
= 0 and iq C1e−Q−(ξ)

− iξ C2e−R−(ξ)
= 0 at ξ = −iq sg(q), which entail the relation

C1e−Q−(−iq sg(q)) + i sg(q) C2e−R−(−iq sg(q))
= 0 if R q ≠ 0. (24a)

Another condition should be dictated at ξ = iq sg(q) by the use of Q+ and R+. By (23), we require that iξC1eQ+(ξ) + iqC2eR+(ξ) and iqC1eQ+(ξ)
−

iξC2eR+(ξ) vanish at ξ = iq sg(q). Thus,

C1eQ+(iq sg(q))
− i sg(q)C2eR+(iq sg(q))

= 0, R q ≠ 0. (24b)

Equations (24a) form a linear system for (C1, C2). For nontrivial solutions of this system, we require that

eR+(iq sg(q))−Q−(−iq sg(q)) + eQ+(iq sg(q))−R−(−iq sg(q))
= 0, (25a)

which is recast to the expression

{Q+(iq sg(q)) + Q−(−iq sg(q))} − {R+(iq sg(q)) + R−(−iq sg(q))} = i(2l + 1)π (25b)

for any l in Z. Equations (25) form our core result. Recall that Q±(ξ) and R±(ξ) are defined by (19). By virtue of (24) and (25), the constants
C1 and C2 are interrelated, as expected.

Remark 2. Dispersion relation (25a) or (25b) exhibits reflection symmetry with respect to q, i.e., it is invariant under the replacement
q→ −q, as anticipated for the case with an isotropic surface conductivity. If σ∗(ω) = −σ(ω) and the ambient medium is lossless, we can ver-
ify that if q(ω) is a solution of (25b) and so is q∗(ω); thus, if q(ω) is unique for R q(ω) > 0 or R q(ω) < 0, with fixed ω, this q(ω) must be
real.

The integer l that appears in (25b) deserves some attention.

Remark 3. Because Q±(ξ) and R±(ξ) are analytic and single valued, only one value of the integer l is relevant in dispersion relation (25b)
(cf. Refs. 23 and 25 for a similar discussion). This l should be chosen in conjunction with the branch for the logarithm in the integrals for Q±
and R±. Of course, relation (25b) should furnish the physically anticipated results. For example, q approaches the known quasi-electrostatic
limit if ∣q∣ ≫ ∣k0∣ and I σ > 0 (Sec. VIII and Ref. 23); q should also approach k0 at low enough frequencies and thus yield a gapless energy
spectrum ω(q) of the EP in the dissipationless case, if q is real (Sec. VII and Ref. 23). We choose to set l = 0, which implies that the branch of the
logarithm w = lnPϖ(ξ) (ϖ = TM, TE) in the integrals for Q± and R± is such that −π < Iw ≤ π, when ξ lies in the top Riemann sheet (see Secs. VII
and VIII).

Remark 4. Equations (25) express the combined effect of TM and TE polarizations via the terms Q±(±iqsg(q)) and R±(±iqsg(q)),
respectively. In the nonretarded frequency regime, the R± terms become relatively small (see Sec. VIII for details).

VI. TANGENTIAL ELECTRIC FIELD AND BULK SURFACE PLASMONS
In this section, we compute the electric field tangential to the sheet. The EP wave number, q, satisfies dispersion relation (25). For

definiteness, we henceforth assume that

R q > 0 and I q ≥ 0.
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First, by (22a)–(24), we obtain the Fourier transforms

û−(ξ) = −C1[iξ e−Q−(ξ)
− q e−Q−(−iq)eR−(−iq)−R−(ξ)

](q2 + ξ2)−1,

v̂−(ξ) = −C1[iq e−Q−(ξ) + ξ e−Q−(−iq)eR−(−iq)−R−(ξ)
](q2 + ξ2)−1

and

û+(ξ) = C1[iξ eQ+(ξ) + q eQ+(iq)eR+(ξ)−R+(iq)
](q2 + ξ2)−1,

v̂+(ξ) = C1[iq eQ+(ξ)
− ξeQ+(iq)eR+(ξ)−R+(iq)

](q2 + ξ2)−1.

These functions are analytic at ξ = ±iq. The inverse Fourier transforms are

Ex(x, 0) = −
C1

2πi∫
∞

−∞

dξ
eiξx

q2 + ξ2 [iξ e−Q−(ξ)
− q e−Q−(−iq)eR−(−iq)−R−(ξ)

], (26a)

Ey(x, 0) = −
C1

2πi∫
∞

−∞

dξ
eiξx

q2 + ξ2 [iq e−Q−(ξ) + ξ e−Q−(−iq)eR−(−iq)−R−(ξ)
], x > 0, (26b)

and

Ex(x, 0) =
C1

2πi∫
∞

−∞

dξ
eiξx

q2 + ξ2 [iξ eQ+(ξ) + q eQ+(iq)eR+(ξ)−R+(iq)
], (27a)

Ey(x, 0) =
C1

2πi∫
∞

−∞

dξ
eiξx

q2 + ξ2 [iq eQ+(ξ)
− ξ eQ+(iq)eR+(ξ)−R+(iq)

], x < 0. (27b)

The task now is to approximately evaluate the above integrals for fixed q in the following regimes: (i) ∣qx∣ ≪ 1, close to the edge (Sec. VI A);
and (ii) for sufficiently large ∣qx∣ if x > 0 (Sec. VI B). We describe two types of plausibly emerging SPs, which, for fixed q and ω, have distinct
propagation constants in the x-direction, on the sheet away from the edge. For large ∣qx∣, our calculation indicates the localization of the EP
on the sheet near the material edge.

A. Tangential electric field near the edge, ∣qx∣ ≪ 1
Consider x > 0 for points on the sheet. In (26), we shift the integration path in the lower half ξ-plane, keeping in mind that the integrands

are analytic at ξ = −iq, and write

Ex(x, 0) = −
C1

2πi∫
+∞−iδ1

−∞−iδ1

dξ
eiξx

q2 + ξ2 [iξ e−Q−(ξ)
− q e−Q−(−iq)eR−(−iq)−R−(ξ)

],

Ey(x, 0) = −
C1

2πi∫
+∞−iδ1

−∞−iδ1

dξ
eiξx

q2 + ξ2 [iq e−Q−(ξ) + ξ e−Q−(−iq)eR−(−iq)−R−(ξ)
], x > 0,

for a positive constant δ1 with δ1 ≫ ∣q∣ and δ1x≪ 1. Thus, the factor eiξx in each integrand has a magnitude close to unity. From the Appendix,
we use the asymptotic formulas

e−Q−(ξ)
= Q(ξ)[1 + o(1)] and e−R−(ξ)

= 1 + o(1) as ξ →∞,

where

Q(ξ) ∶= (−
ωμσξ
2k2

0
)

−1/2

,

which has a branch cut emanating from the origin in C+.
The component of the electric field parallel to the edge on the sheet approaches the following limit:
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lim
x↓0

Ey(x, 0) = −
C1

2πi
[iq∫

+∞−iδ1

−∞−iδ1

dξ (q2 + ξ2)−1 e−Q−(ξ)

+e−Q−(−iq)+R−(−iq) lim
x↓0 ∫

+∞−iδ1

−∞−iδ1

dξ eiξx(q2 + ξ2)−1ξe−R−(ξ)
].

Since e−Q−(ξ)
= O(ξ−1/2) as ξ →∞, we infer that the first one of the above integrals converges. In fact, we see that this integral vanishes

by closing the integration path through a large semicircle in C−. The second integral is evaluated via the approximations q2 + ξ2
∼ ξ2 and

e−R−(ξ)
∼ 1 since ∣ξ∣ ≫ ∣q∣. Hence, at the edge, Ey(x, 0) on the sheet has the finite value

lim
x↓0

Ey(x, 0) =: Ey(0+, 0) = −C1e−Q−(−iq)+R−(−iq), (28)

where q satisfies (25) (cf. Ref. 23 in the context of the quasi-electrostatic approach). It can be shown that the correction to this leading-order
term for Ey(x, 0) is of the order of ∣k0x∣.

In a similar vein, we can address Ex(x, 0), the component of the electric field on the sheet normal to the edge. Without further ado, we
compute (with δ1 ≫ ∣q∣)

Ex(x, 0) ∼ −
C1

2πi
[∫

+∞−iδ1

−∞−iδ1

dξ
eiξx

q2 + ξ2 (iξ)Q(ξ) − qe−Q−(−iq)+R−(−iq)
∫

+∞−iδ1

−∞−iδ1

dξ
e−R−(ξ)

q2 + ξ2 ]

= −
C1

2πi∫
+∞−iδ1

−∞−iδ1

dξ
eiξx

q2 + ξ2 (iξ)Q(ξ) ∼ −
C1

2π∫
+∞−iδ1

−∞−iδ1

dξ
eiξx

ξ
Q(ξ).

By applying integration by parts once and wrapping the integration contour around the positive imaginary axis in the ξ-plane, we obtain

Ex(x, 0) ∼ 2C1(
2i k0

πωμσ
)

1/2√
k0x, ∣qx∣ ≪ 1, x > 0. (29)

Thus, the surface current normal to the edge vanishes, as it happens also for line currents at the ends of cylindrical antennas with a delta-
function voltage generator.50 For a similar result in the scattering of waves from conducting films, see Eq. (39) of Ref. 55.

Consider x < 0, if the observation point lies at z = 0 outside the sheet. By (27), we have

Ex(x, 0) =
C1

2πi∫
+∞+iδ1

−∞+iδ1

dξ
eiξx

q2 + ξ2 [iξ eQ+(ξ) + q eQ+(iq)eR+(ξ)−R+(iq)
],

Ey(x, 0) =
C1

2πi∫
+∞+iδ1

−∞+iδ1

dξ
eiξx

q2 + ξ2 [iq eQ+(ξ)
− ξ eQ+(iq)eR+(ξ)−R+(iq)

], x < 0,

where δ1 ≫ ∣q∣ and δ1∣x∣ ≪ 1. We will also need the following formulas (see the Appendix):

eQ+(ξ)
= Q(−ξ)−1

[1 + o(1)] and eR+(ξ)
= 1 + o(1) as ξ →∞,

noting that Q(−ξ) has a branch cut emanating from the origin in C−.
For ∣qx∣ ≪ 1, we therefore compute

lim
x↑0

Ey(x, 0) =: Ey(0−, 0) =
C1

2πi
[iq∫

+∞+iδ1

−∞+iδ1

dξ
eQ+(ξ)

q2 + ξ2

−eQ+(iq)−R+(iq) lim
x↑0 ∫

+∞+iδ1

−∞+iδ1

dξ eiξx ξ
q2 + ξ2 eR+(ξ)

]

= −
C1

2πi
eQ+(iq)−R+(iq) lim

x↑0 ∫

+∞+iδ1

−∞+iδ1

dξ eiξx ξ
q2 + ξ2 eR+(ξ)

= C1 eQ+(iq)−R+(iq). (30)

In the above equation, the integral of the first line is convergent; in fact, this integral vanishes. In the integrand of the remaining integral, we
use the approximations q2 + ξ2

∼ ξ2 and eR+(ξ)
∼ 1. By dispersion relation (25a) and limit (28), we conclude that Ey(x, 0) is continuous across

the edge, viz.,

Ey(0−, 0) = Ey(0+, 0).
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On the other hand, the x-component of the electric field at z = 0 outside the sheet is

Ex(x, 0) ∼
C1

2πi
[∫

+∞+iδ1

−∞+iδ1

dξ
eiξx

q2 + ξ2 (iξ)Q(−ξ)−1 + q eQ+(iq)−R+(iq)
∫

+∞+iδ1

−∞+iδ1

dξ
eR+(ξ)

q2 + ξ2 ]

=
C1

2πi∫
+∞+iδ1

−∞+iδ1

dξ
eiξx

q2 + ξ2 (iξ)Q(−ξ)−1
∼

C1

2π∫
+∞+iδ1

−∞+iδ1

dξ
eiξx

ξ
Q(−ξ)−1

= C1(
ωμσ

2πi k0
)

1/2 1
√

k0∣x∣
, ∣qx∣ ≪ 1, x < 0. (31)

Thus, ∂Ex(x, z)/∂x indeed has a non-integrable singularity as x ↑ 0 at z = 0 (see Remark 1).

B. Far field: Two types of bulk SPs in the direction normal to the edge
Next, we describe the bulk SPs in the x-direction with recourse to the Fourier integrals for Ex(x, 0) and Ey(x, 0). By (19a) and (26), for

x > 0, we use the integral representations

Ex(x, 0) = −
C1

2πi∫
∞

−∞

dξ
eiξx

q2 + ξ2 {
iξ

PTM(ξ)
eQ+(ξ)

− eR−(−iq)−Q−(−iq) q
PTE(ξ)

eR+(ξ)
}, (32a)

Ey(x, 0) = −
C1

2πi∫
∞

−∞

dξ
eiξx

q2 + ξ2 {
iq

PTM(ξ)
eQ+(ξ) + eR−(−iq)−Q−(−iq) ξ

PTE(ξ)
eR+(ξ)

}, (32b)

where q solves (25), and PTM(ξ) and PTE(ξ) are defined by (13). Note that the integrands are analytic at ξ = iq.

Definition 2 (2D bulk SPs). Consider the electric field tangential to the sheet. For every q solving (25) with given ω, the 2D bulk SPs in the
positive x-direction are identified with waves that arise from (32) as residues of the integrands from the zeros of PTM(ξ) or PTE(ξ) in the upper
half ξ-plane of the top Riemann sheet (R

√
ξ2 + q2 − k2

0 > 0).
If the ambient medium is lossless (k0 > 0), we can characterize these waves as follows: If I σ(ω) > 0, only the zeros ξ = ±ke

sp (ke
sp ∈ C+) of

PTM(ξ) are present in the top Riemann sheet [see (34a)]. In this case, only ke
sp contributes to the residues, which amounts to a TM-like bulk

SP.9,54,55 Similarly, if I σ(ω) < 0, only the zero ξ = km
sp ∈ C+ of PTE(ξ) contributes to the residues [see (34b)]. This case signifies a TE-like bulk

SP.9,54,55

Definition 2 does not explain how these 2D SPs can be separated from other contributions to the Fourier integrals for Ex(x, 0) and Ey(x, 0).
We address this issue in a simplified way.

By (32), we proceed to calculate Ex(x, 0) and Ey(x, 0) by contour integration in the far field, for sufficiently large ∣
√

q2 − k2
0 x∣, and thus

indicate the emergence of bulk SPs as possibly distinct contributions. By closing the path in the upper half ξ-plane, we write

Eℓ(x, 0) = Esp
ℓ (x, 0) + Erad

ℓ (x, 0) (ℓ = x, y),

where Esp
ℓ is the residue contribution, which amounts to a bulk SP in the x-direction (Definition 2), and Erad

ℓ is the contribution from the branch
cut emanating from the point i

√
q2 − k2

0 (R
√

q2 − k2
0 > 0). We refer to the latter contribution as the “radiation field.”55 In this simplified

treatment, we focus on large enough distances from the edge so that the relevant pole contribution is sufficiently separated from the branch
point contribution.

First, we consider Esp
ℓ (x, 0) (ℓ = x, y). After some algebra, for k0 > 0, we obtain

Esp
x (x, 0)

C1
=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

i[1 − (
ωμσ
2k0
)

2
]

−1

eQ+(ke
sp)eike

spx, Iσ > 0

q
km

sp
(

ωμσ
2k0
)

2
[1 − (

ωμσ
2k0
)

2
]

−1

eR+(km
sp)−R+(iq)+Q+(iq)eikm

spx, Iσ < 0,
(33a)

Esp
y (x, 0)

C1
=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

iq
ke

sp
[1 − (

ωμσ
2k0
)

2
]

−1

eQ+(ke
sp)eike

spx, Iσ > 0

−(
ωμσ
2k0
)

2
[1 − (

ωμσ
2k0
)

2
]

−1

eR+(km
sp)−R+(iq)+Q+(iq)eikm

spx, Iσ < 0.
(33b)
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In the above equation, from the zeros of PTM(ξ) and PTE(ξ), we define the wave numbers

ke
sp = i

¿
Á
ÁÀq2 − (

i2k2
0

ωμσ
)

2

− k2
0 if I σ > 0 (TM), (34a)

km
sp = i

√

q2 − (
ωμσ

2i
)

2
− k2

0 (I ke, m
sp > 0) if I σ < 0 (TE) (34b)

so that ke
sp and km

sp lie in the top Riemann sheet, respectively.54,55

Remark 5. In the nonretarded frequency regime (Sec. VIII), if ∣ωμσ/k0∣ ≪ 1 and I σ(ω) > 0, the q that solves (25) for fixed ω is given by
q ∼ η0 (i2k2

0/(ωμσ)) with η0 > 1;19,23 thus, the TM-like SP is significantly damped. In this regime, we approximate ke
sp ∼ i

√
q2 − [i2k2

0/(ωμσ)]2.
Note that this approximation can be used in the exponential factor for Esp

x (x, 0) and Esp
y (x, 0) with a small error if ∣ωμσ∣x≪ 1, along with

∣ωμσ/k0∣ ≪ 1.
Next, we calculate the contributions, Erad

ℓ (x, 0), along the branch cut (ℓ = x, y). Suppose that
√

q2 − k2
0 > 0. By the change of variable ξ ↦ Ϛ

with ξ = i
√

q2 − k2
0(1 + Ϛ) and Ϛ > 0, we express the requisite integrals as

Erad
x (x, 0) = −

C1

2π

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ωμσ
k0

√
q2 − k2

0

k0
∫

∞

0
dϚ

e−
√

q2−k2
0 xϚeQ+(i

√

q2−k2
0(1+Ϛ))

(1 + Ϛ)2 −
q2

q2−k2
0

(1 + Ϛ)
√

Ϛ(2 + Ϛ)

1 − (ωμσ
2k0
)

2 q2−k2
0

k2
0

Ϛ(2 + Ϛ)

+ 4e−R+(iq)+Q+(iq) q
ωμσ∫

∞

0
dϚ

e−
√

q2−k2
0 xϚ

(1 + Ϛ)2 −
q2

q2−k2
0

eR+(i
√

q2−k2
0(1+Ϛ))

1 − ( 2
ωμσ )

2
(q2 − k2

0)Ϛ(2 + Ϛ)

√
Ϛ(2 + Ϛ)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

× e−
√

q2−k2
0 x

and

Erad
y (x, 0) =

iC1

2π

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

q
k0

ωμσ
k0
∫

∞

0
dϚ

e−
√

q2−k2
0 xϚeQ+(i

√

q2−k2
0(1+Ϛ))

(1 + Ϛ)2 −
q2

q2−k2
0

√
Ϛ(2 + Ϛ)

1 − (ωμσ
2k0
)

2 q2−k2
0

k2
0

Ϛ(2 + Ϛ)

+ 4e−R+(iq)+Q+(iq)

√
q2 − k2

0

ωμσ ∫

∞

0
dϚ

e−
√

q2−k2
0 xϚ

(1 + Ϛ)2 −
q2

q2−k2
0

eR+(i
√

q2−k2
0(1+Ϛ))(1 + Ϛ)

√
Ϛ(2 + Ϛ)

1 − ( 2
ωμσ )

2
(q2 − k2

0)Ϛ(2 + Ϛ)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

× e−
√

q2−k2
0 x.

In the far field, when ∣
√

q2 − k2
0 x∣ ≫ 1 with

RRRRRRRRRRR

(
ωμσ
2k0
)

2 q2
− k2

0

k2
0

1
√

q2 − k2
0x

RRRRRRRRRRR

≪ 1 and
RRRRRRRRRRR

q2
− k2

0

(ωμσ)2
1

√
q2 − k2

0 x

RRRRRRRRRRR

≪ 1,

the major contribution to integration in the above branch cut integrals comes from the endpoint, Ϛ = 0. Accordingly, we evaluate

Erad
x (x, 0) ∼

C1
√

2π
q2
− k2

0

k2
0

⎧⎪⎪
⎨
⎪⎪⎩

ωμσ
2k0

√
q2 − k2

0

k0
eQ+(i

√

q2−k2
0) + 2

q
ωμσ

e−R+(iq)+Q+(iq)eR+(i
√

q2−k2
0)
⎫⎪⎪
⎬
⎪⎪⎭

×
e−
√

q2−k2
0 x

(
√

q2 − k2
0x)3/2

, (35a)
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Erad
y (x, 0) ∼ −

iC1
√

2π
q2
− k2

0

k2
0

⎧⎪⎪
⎨
⎪⎪⎩

ωμσ
2k0

q
k0

eQ+(i
√

q2−k2
0) + 2

√
q2 − k2

0

ωμσ
e−R+(iq)+Q+(iq)eR+(i

√

q2−k2
0)
⎫⎪⎪
⎬
⎪⎪⎭

×
e−
√

q2−k2
0 x

(
√

q2 − k2
0x)3/2

(x > 0). (35b)

The above far-field formulas for Erad
x (x, 0) and Erad

y (x, 0) can be analytically continued to complex
√

q2 − k2
0 with R

√
q2 − k2

0 > 0.

Remark 6. By the formulas for Erad
ℓ (x, 0) (ℓ = x, y), this contribution may decay rapidly with x if ∣q∣ ≫ k0. This can occur in the nonretarded

frequency regime (see Sec. VIII), where I σ > 0 and q ≃ η0(i2k2
0/(ωμσ)) with η0 > 1.23 By inspection of the simplified formulas for the TM-like

bulk SP, Esp
ℓ , and the radiation field Erad

ℓ , we expect that, in the nonretarded frequency regime, the SP contribution can be dominant over the
radiation field. Hence, the EP electric field tangential to the sheet can be localized near the edge on the 2D material.

A more accurate study of the electric field would involve the derivation of asymptotic formulas for the requisite Fourier integrals
in an intermediate regime of distances from the edge, between the near and far fields. In addition, q(ω) must be numerically com-
puted from dispersion relation (25) for various material parameters and frequencies of interest. These tasks will be the subject of future
work.43

VII. ON THE LOW-FREQUENCY EP DISPERSION RELATION
In this section, we derive an asymptotic formula for the q that obeys (25) if

∣
ωμσ(ω)

k0
∣ ≫ 1 and I σ(ω) > 0 (k0 = ω

√
με). (36a)

One way to motivate these conditions is to invoke the Drude model for the doped single-layer graphene, which is expected to be accurate
for small enough plasmon energies.10 By this model, σ(ω) = i[e2vF

√
ns/(
√

πh̵)](ω + i/τe)−1, where e is the electron charge, vF is the Fermi
velocity, τe is the relaxation time of microscopic collisions, ns is the electron surface density, and h̵ is the reduced Planck constant, while the
interband transitions are neglected in the calculation of this σ(ω).56 Hence, within this model, the conditions of (36a) are obeyed if

τ−1
e ≪ ω≪ ωp where ωp = ∣Z0

e2√nsvF
√

πh̵
∣, Z0 =

√μ
ε

, (36b)

and Z0 is the characteristic impedance of the (unbounded) ambient medium. For given ω, the conditions in (36b) call for a large enough
relaxation time, τe, and surface density, ns. We expect that q/k0 = O(1) with ∣q∣ > k0 in this regime. Our task here is to refine this anticipated
result. Note that the model for σ(ω) can be improved by consideration of both the intraband and interband transitions in the linear-response
quantum theory for σ.56

First, we convert (25b) for the EP dispersion to a more explicit expression with R q > 0. Consider integral formulas (19) for Q±(ξ). By
changing the integration variable, ξ′, according to ξ′ = qϚ, we can alternatively write (25b), with l = 0, as

I(q) ∶=
2
π∫

∞

0

dϚ
1 + Ϛ2 { ln[1 +

iωμσ
2k0

q
k0
(Ϛ2 + 1 − k2

0/q
2
)

1/2
]

− ln[1 −
iωμσ

2q
(Ϛ2 + 1 − k2

0/q
2
)
−1/2
]} = iπ, (37)

R
√

q2(Ϛ2 + 1) − k2
0 > 0.

The last condition defines the top Riemann sheet in the Ϛ-plane for the integrand in (37). By use of (36a), we note that in the present frequency
regime, we have

I(q) =
2
π∫

∞

0

dϚ
1 + Ϛ2 {ln(eiπ

(−
iωμσ
2k0
)) − ln(−

iωμσ
2k0
)} +

2
π∫

∞

0

dϚ
1 + Ϛ2 ln(

Ϛ2 + q2

1 − q2 )

+ O(ϵ ln ϵ)

= iπ +
2
π∫

∞

0

dϚ
1 + Ϛ2 ln(

Ϛ2 + q2

1 − q2 ) + O(ϵ ln ϵ), ϵ = i
2k0

ωμσ
, q2

= 1 −
k2

0

q2 (∣q∣ < 1)

with ∣ϵ∣ ≪ 1. In the above equation, we defined the branch of the logarithm, w = ln(⋅), by −π < Iw ≤ π; accordingly, q→ 0 as ϵ→ 0, when q
approaches k0 (see Remark 3). More generally, we may define (2l0 − 1)π < Iw ≤ (2l0 + 1)π for some l0 ∈ Z while we set l = l0 in (25b).
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We proceed to describe in some detail the asymptotics for (37). By invoking the identity

ln
⎛
⎜
⎝

1 − ϵ−1

¿
Á
ÁÀ Ϛ2 + q2

1 − q2

⎞
⎟
⎠
− ln
⎛
⎜
⎝

1 + ϵ−1

¿
Á
ÁÀ 1 − q2

Ϛ2 + q2

⎞
⎟
⎠
= iπ + 2 ln

⎛
⎜
⎝

¿
Á
ÁÀ Ϛ2 + q2

1 − q2

⎞
⎟
⎠

+ ln
⎛
⎜
⎝

1 − ϵ

¿
Á
ÁÀ 1 − q2

Ϛ2 + q2

⎞
⎟
⎠
− ln
⎛

⎝
1 + ϵ

Ϛ
√

1 − q2
+ ϵ
√

Ϛ2 + q2 − Ϛ
√

1 − q2

⎞

⎠

and treating the term ϵ(
√

Ϛ2 + q2 − Ϛ)/
√

1 − q2 as a perturbation in the last logarithm, we approximate (37) by the relation

I1(q) − ϵI2(q) − I3(ϵ) ∼
π
2

ln(1 − q2), ϵ =
ϵ

√
1 − q2

,

where

I1(χ) = ∫
∞

0
dϚ

ln(Ϛ2 + χ2)
1 + Ϛ2 , I2(χ) = ∫

∞

0
dϚ
⎛

⎝

1
√

Ϛ2 + χ2
−

Ϛ
1 + Ϛ2

⎞

⎠
,

I3(χ) = ∫
∞

0
dϚ

ln(1 + χϚ)
1 + Ϛ2 .

The first two integrals can be computed directly. For I1(χ), by contour integration, we obtain

I1(χ) = π ln(1 + χ) = π(χ −
1
2

χ2
) + O(χ3), ∣χ∣ ≪ 1.

The integral I2(χ) is expressed as

I2(χ) = lim
M→∞

⎧⎪⎪
⎨
⎪⎪⎩
∫

M

0

dϚ
√

Ϛ2 + χ2
− ∫

M

0
dϚ

Ϛ
1 + Ϛ2

⎫⎪⎪
⎬
⎪⎪⎭

= lim
M→∞

⎧⎪⎪
⎨
⎪⎪⎩

ln
⎛

⎝

M
χ

+

¿
Á
ÁÀ1 +

M2

χ2

⎞

⎠
−

1
2

ln(1 + M2)
⎫⎪⎪
⎬
⎪⎪⎭

= ln(2/χ).

In order to obtain an asymptotic expansion for I3(χ) as χ → 0, we use the Mellin transform technique.57 The idea is to compute the Mellin
transform, Ĩ3(s), of I3(χ) and then employ its inversion formula; the desired asymptotic expansion for I3(χ) comes from the residues at poles
of Ĩ3(s) in the s-plane with R s ≥ α for some suitable real α. For χ > 0, define

Ĩ3(s) = ∫
∞

0
dχ I3(χ)χ−s

=
1
2

Γ(s)
(s − 1)2 Γ(2 − s) Γ(

s
2
) Γ(−

s
2

+ 1), 1 < R s < 2 = α,

so that this integral converges, where Γ(ζ) is the gamma function.58 Here, we interchanged the order of integration (in χ and Ϛ) and used a
known integral for the beta function, B(ζ1, ζ2) = Γ(ζ1)Γ(ζ2)/Γ(ζ1 + ζ2).58 Consider the inversion formula

I3(χ) =
1

2πi∫
c1+i∞

c1−i∞
ds χs−1̃I3(s), 1 < c1 < 2 = α,

and shift the integration path to the right, i.e., into the region of the s-plane with R s ≥ α = 2, noting that Ĩ3(s) has poles at the integers s = n
(with n ≥ 2) in this region. By applying the residue theorem at the double pole s = 2 and the simple pole s = 3, we find

I3(χ) = χ(1 − ln χ) +
π
4

χ2 + O(χ3 ln χ) as χ → 0.

This expansion can be analytically continued to complex χ with R χ ≥ 0.
Consequently, after some algebra, dispersion relation (37) is reduced to the formula

q ∼ k0{1 +
1

2π2 ϵ2 A(ϵ)2
}, ϵ =

i 2k0

ωμσ
, (38a)

where, for simplicity, we neglected terms o(ϵ2) on the right-hand side. In the above equation, the function A(ϵ) amounts to logarithmic
corrections and solves the equation
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eA =
2eπ
ϵ2A

. (38b)

Note that an expansion for A(ϵ) can be formally constructed via the iterative scheme

A(n+1)(ϵ) = ln(
2eπ
ϵ2 ) − lnA(n)(ϵ), A(0)(ϵ) = ln

2eπ
ϵ2 (n = 0, 1, . . .).

Finally, one can verify that the result furnished by (38) does not violate the conditions PTM(ξ; q) ≠ 0 and PTE(ξ; q) ≠ 0 for all real ξ, which are
assumed for the application of the underlying Wiener–Hopf factorization in Sec. V B.

VIII. ON THE NONRETARDED FREQUENCY REGIME
In this section, we simplify (25b) under the conditions

∣
ωμσ(ω)

k0
∣ ≪ 1 and I σ(ω) > 0,

which signify the nonretarded frequency regime in the context of our isotropic conductivity model.5,9 We show how the quasi-electrostatic
approximation of previous works19,23 can be refined. In fact, we derive a correction to this approximation, which indicates the role of the TE
polarization through the relatively small R±(±iqsg(q)) terms in (25b). In this regime, we expect to have17,23

η(q) = −
iωμσ
2k0

q
k0
= −

iωμσ
2k0

1
δ
= O(1), δ =

k0

q
,

and thus, ∣δ∣ ≪ 1 (∣q∣ ≫ ∣k0∣). The definition of η(q) is inspired by the quasi-electrostatic approach of Ref. 23 where it is found that η ≃ 1.217.
We assume that R q > 0.

First, we expand in δ the integral pertaining to PTE for fixed η. By (19b), we have

R+(iq) + R−(−iq) =
2
π∫

∞

0

dϚ
1 + Ϛ2 ln[1 + ηδ2 (Ϛ2 + 1 − δ2)−1/2

]

∼
2
π∫

∞

0

dϚ
1 + Ϛ2 ln[1 + ηδ2 (1 + Ϛ2)−1/2

(1 +
δ2

2
1

1 + Ϛ2 )]

∼
2
π∫

∞

0

dϚ
1 + Ϛ2 {ηδ2 (1 + Ϛ2)−1/2

(1 +
δ2

2
1

1 + Ϛ2 ) −
1
2

(ηδ2)2

1 + Ϛ2 }

=
2
π

ηδ2
[1 + (

1
3
−

π
8

η)δ2
], ∣δ∣ ≪ 1.

In contrast, the integral pertaining to PTM is

Q+(iq) + Q−(−iq) =
2
π∫

∞

0

dϚ
1 + Ϛ2 ln(1 − η

√
Ϛ2 + 1 − δ2) = O(1),

which is dominant over R+(iq) + R−(−iq). By expanding in δ for fixed η = η(q), we find

Q+(iq) + Q−(−iq) ∼
2
π∫

∞

0

dϚ
1 + Ϛ2 ln{1 − η

√
1 + Ϛ2[1 −

δ2

2
1

1 + Ϛ2 −
δ4

8
1

(1 + Ϛ2)2 ]}

∼
2
π
{∫

∞

0

dϚ
1 + Ϛ2 ln(1 − η

√
1 + Ϛ2) −

1
2

ηδ2
∫

∞

0

dϚ
(1 + Ϛ2)3/2

(η
√

1 + Ϛ2 − 1)
−1

−
1
8

ηδ4
[η∫

∞

0

dϚ
(1 + Ϛ2)2 (η

√
1 + Ϛ2 − 1)−2 + ∫

∞

0

dϚ
(1 + Ϛ2)5/2

(η
√

1 + Ϛ2 − 1)
−1
]}.

By neglecting terms O(δ4), we thus approximate dispersion relation (25b) with l = 0 by

2∫
∞

0

dϚ
1 + Ϛ2 ln(η

√
1 + Ϛ2 − 1) ∼ ηδ2

{η∫
∞

0

dϚ
1 + Ϛ2 (η

√
1 + Ϛ2 − 1)

−1
+ 1}, (39)
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where the term iπ = ln(−1) from (25b) was combined with the logarithm from Q+(iq) + Q−(−iq), resulting in the reversal of the sign of its
argument. Note that ηδ = −iωμσ/(2k0). Thus, the solution, q, of (39) is expressed via the expansion

η(q) ∼ η0{1 − η1(
ωμσ
2k0
)

2
}, ηj = O(1) (j = 0, 1), ∣

ωμσ
2k0
∣ ≪ 1.

The coefficients ηj are determined below. The substitution of the above expansion into (39) along with a dominant balance argument yields
the desired equations for ηj, viz.,

∫

∞

0

dϚ
1 + Ϛ2 ln(η0

√
1 + Ϛ2 − 1) = 0, (40a)

2η0η1∫

∞

0

dϚ
√

1 + Ϛ2
(η0
√

1 + Ϛ2 − 1)
−1
= ∫

∞

0

dϚ
1 + Ϛ2 (η0

√
1 + Ϛ2 − 1)

−1
+ η−1

0 . (40b)

Equation (40a) is in agreement with the corresponding result in the quasi-electrostatic limit derived in Ref. 23 and gives η0 ≃ 1.217 [cf.
their Eq. (39) and the subsequent relation in view of the change of variable Ϛ ↦ x with Ϛ = cotx here]. On the other hand, after some algebra,
(40b) entails

η1 =
1
2

⎧⎪⎪
⎨
⎪⎪⎩

1 −
√

1 − η−2
0

π
2 − η−1

0
π
2 + arcsin(η−1

0 )

⎫⎪⎪
⎬
⎪⎪⎭

(0 < arcsin w <
π
2

if 0 < w < 1).

The numerical evaluation of this coefficient yields η1 ≃ 0.416 by use of η0 ≃ 1.217. According to our expansion for η(q) above, the EP wave
number is furnished by

q = η0
i2k2

0

ωμσ
{1 − η1(

ωμσ
2k0
)

2
+ O((ωμσ

2k0
)

4
)}. (41)

Evidently, the leading-order correction term, which is of the relative order of (ωμσ/k0)2, comes from the contributions of both TM and TE
polarizations, i.e., from both the Q± and R± terms in dispersion relation (25b).

By virtue of (41), it is of some interest to describe q(ω) when σ(ω) is given by the Drude model, which is relevant to the doped single-layer
graphene for small enough plasmonic energies (see Sec. VII).9,10 By the use of the formula σ(ω) = i(D/π) (ω + i/τe)−1 (beginning of Sec. VII),
where the dimensional parameter D is the Drude weight,10 we obtain

R q(ω) ∼
2η0επ
D

ω2
{1 +

η1

4π2
(Z0D)2

ω2 + τ−2
e
} ∼

2η0επ
D
{ω2 +

η1

4π2 (Z0D)2
},

I q(ω) ∼
2η0επ
D

ωτ−1
e {1 −

η1

4π2
(Z0D)2

ω2 + τ−2
e
} ∼

2η0επ
D

ωτ−1
e {1 −

η1

4π2
(Z0D)2

ω2 }.

Here, the formulas on the extreme right-hand sides come from applying the condition ωτe ≫ 1.

IX. EXTENSION: TWO COPLANAR CONDUCTING SHEETS
In this section, we extend our formalism to the setting with two coplanar, semi-infinite sheets of distinct isotropic and homogeneous

conductivities. Consider the “left” sheet ΣL
= {(x, y, z) ∈ R3 : z = 0, x < 0} and the “right” sheet ΣR

= {(x, y, z) ∈ R3 : z = 0, x > 0} that have
scalar, spatially constant surface conductivities σL(ω) and σR(ω), respectively (σL

≠ σR and σLσR
≠ 0). We formulate and solve a system of

Wiener–Hopf integral equations for the electric field tangential to the plane of the sheets on Σ = ΣL
∪ ΣR in order to derive the dispersion

relation for the EP that propagates along the y-axis.
The surface current density is J(x, y) = eiqyσ(x){Ex(x, z)ex + Ey(x, z)ey}∣z=0, where

σ(x) = σL + ϑ(x)(σR
− σL) (σR

≠ σL),

and the Heaviside step function ϑ(x) is defined by ϑ(x) = 1 if x > 0 and ϑ(x) = 0 if x < 0. By using the vector potential in the Lorenz gauge
(Sec. III B),47 we obtain the system

(
u(x)
v(x)) =

iωμ
k2

0

⎛
⎜
⎜
⎝

d2

dx2 + k2
0 iq

d
dx

iq
d

dx
k2

eff

⎞
⎟
⎟
⎠
∫

∞

−∞

dx′ K(x − x′)σ(x′)(u(x′)
v(x′)), x in R,
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where u(x) = Ex(x, 0) and v(x) = Ey(x, 0). By applying the Fourier transform with respect to x, we obtain the functional equations [cf. (11b)]

ΛR(ξ)(û−(ξ)
v̂−(ξ)) + ΛL(ξ)(û+(ξ)

v̂+(ξ)) = 0 (all real ξ), (42a)

where

Λℓ(ξ) ∶=

⎛
⎜
⎜
⎜
⎜
⎝

1 −
iωμσℓ

k2
0

(k2
0 − ξ2)K̂(ξ; q) −

iωμσℓ

k2
0

(iq)(iξ)K̂(ξ; q)

−
iωμσℓ

k2
0

(iq)(iξ)K̂(ξ; q) 1 −
iωμσℓ

k2
0

(k2
0 − q2)K̂(ξ; q)

⎞
⎟
⎟
⎟
⎟
⎠

, ℓ = R, L. (42b)

In the spirit of our analysis for a single sheet (Sec. V A), we diagonalize the matrices Λℓ(ξ). Their eigenvalues are [cf. (13)]

Pℓ
TM(ξ) = 1 −

iωμσℓ

k2
0

(k2
eff − ξ2)K̂(ξ), Pℓ

TE(ξ) = 1 − iωμσℓK̂(ξ) (ℓ = R, L).

Recall that K̂(ξ) = (i/2)(k2
eff − ξ2)−1/2, where keff =

√
k2

0 − q2; I
√

k2
eff − ξ2 > 0 for the first Riemann sheet. Accordingly, the functional

equations (42a) become

(
PL

TM(ξ) 0
0 PL

TE(ξ)
)S(ξ)(û+(ξ)

v̂+(ξ)) + (P
R
TM(ξ) 0

0 PR
TE(ξ)

)S(ξ)(û−(ξ)
v̂−(ξ)) = 0,

for real ξ, where the matrix S(ξ) is defined by (14). Hence, we recover and apply transformation (15) where (û, v̂)↦ (U, V); the functions
U±(ξ) and V±(ξ) satisfy the equations

PL
TM(ξ)U+(ξ) + PR

TM(ξ)U−(ξ) = 0,

PL
TE(ξ)V+(ξ) + PR

TE(ξ)V−(ξ) = 0, all real ξ.

These equations form an extension of (16) to the geometry of two coplanar sheets.
Following the procedure of Sec. V B, we assume that

Pℓ
TM(ξ) ≠ 0 and Pℓ

TE(ξ) ≠ 0 for all real ξ (ℓ = R, L).

By defining the functions

PTM(ξ) =
PR

TM(ξ)
PL

TM(ξ)
, PTE(ξ) =

PR
TE(ξ)

PL
TE(ξ)

(43)

with Q(ξ) = lnPTM(ξ) and R(ξ) = lnPTE(ξ), we carry out the splittings indicated in (17); the logarithmic functions here are such that Q(ξ)
= ln PR

TM(ξ) − ln PL
TM(ξ) and R(ξ) = ln PR

TE(ξ) − ln PL
TE(ξ) when ξ lies in the top Riemann sheet (cf. Remark 3). Because in the present setting,

the indices associated with PTM(ξ) and PTE(ξ) on the real axis are zero, i.e., ν = 0 as in (18), the split functions Q±(ξ) and R±(ξ) are given by
integrals (19) under (43). Note that eQ±(ξ)

= O(1) and eR±(ξ)
→ 1 as ξ →∞ in C± (see the Appendix). The Wiener–Hopf method furnishes the

entire functions E1(ξ) = C1 = const. and E2(ξ) = C2 = const., as in the case with a single conducting sheet (Sec. V B). Some intermediate steps
are slightly different because of the asymptotics for eQ±(ξ) in the setting with two sheets (see the Appendix). We omit any further details about
how to obtain E1(ξ) and E2(ξ) here.

Consequently, we obtain the formulas U±(ξ) = ∓C1e±Q±(ξ) and V±(ξ) = ∓C2e±R+(ξ), where C1 and C2 are arbitrary constants, which, in
turn, yield (22) and (23) for û±(ξ) and v̂±(ξ). By the analyticity of u−(ξ) and v−(ξ) at ξ = −iqsg(q), and the analyticity of u+(ξ) and v+(ξ) at
ξ = iqsg(q), we subsequently derive relations (25).

X. CONCLUSION AND DISCUSSION
In this paper, by using the theory of the Wiener–Hopf integral equations, we derived the dispersion relation for the edge plasmon-

polariton that propagates along the straight edge of a semi-infinite, planar conducting sheet. The sheet lies in a uniform isotropic medium.
Our treatment takes into account retardation effects in the sense that, given a spatially homogeneous scalar conductivity of the 2D material as
a function of frequency, the underlying boundary value of Maxwell’s equations is solved exactly. Thus, we avoid the restrictive assumptions
of the quasi-electrostatic approximation. Our formalism was directly extended to the geometry with two semi-infinite, coplanar conducting
sheets.
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In our formal analysis, the existence of the EP dispersion relation on the isotropic sheet is connected to the notion of zero index in
Krein’s theory.26 In the setting of the dissipationless Drude model for the surface conductivity,10 for example, this zero index mathemati-
cally expresses the property that, for every (real) EP wave number q, the corresponding EP frequency, or energy, ω(q), is smaller than the
energy of the 2D bulk SP of the same wave number. Thus, the character of this EP remains intact in the isotropic setting, in contrast to the
situation with a strictly anisotropic conductivity, e.g., in the presence of a static magnetic field, where a branch of ω(q) may cross the respec-
tive dispersion curve of the 2D bulk SP.23 This latter possibility is studied in some generality, yet within the quasi-electrostatic approach,
elsewhere.25,43

The EP dispersion relation derived here expresses the simultaneous presence of distinct polarization effects. To be more precise,
the effect of the TM polarization, which alone provides the fine scale of the bulk SP in the nonretarded frequency regime, is accompa-
nied by a contribution that amounts to the TE polarization. In this framework, we were able to smoothly connect two non-overlapping
asymptotic regimes: (i) the low-frequency limit, in which the EP wave number, q, approaches the free-space propagation constant, k0,
and thus q/ω ∼ const.; and (ii) the nonretarded frequency regime, where q is much larger in magnitude than k0 and q/ω2

∼ const. In
each of these regimes, we derived corrections to the anticipated, leading-order formulas for q(ω) by invoking the semi-classical Drude
model.

Our work has limitations and leaves several open questions. Two noteworthy issues are the stability of the EP under perturbations of
the edge and the semi-infinite character of the sheet geometry. As a next step, it is tempting to analyze the EP dispersion in microstrips,
which may be more closely related to the actual experimental setups.13,16 This setting calls for developing approximate solution schemes for
the related integral equations for the electric field. Since we addressed only isotropic and homogeneous surface conductivities, it is natural
to investigate how to analyze anisotropic or nonhomogeneous sheets with nonlocalities.25 In this context, a possibility is to couple the full
Maxwell equations with the linearized models of viscous electron flow in the hydrodynamic regime,59 where the viscosity and compressibility
induce nonlocal effects in the effective conductivity tensor within linear-response theory; moreover, the edge as a boundary of the viscous 2D
electron system necessarily affects the form of the conductivity tensor.
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APPENDIX: ON ASYMPTOTIC EXPANSIONS FOR Q±(ξ) AND R±(ξ) AS ξ →∞

In this appendix, we sketch the derivations of asymptotic formulas for the split functions Q±(ξ) and R±(ξ) as ξ →∞ in C± (see Secs. V
and IX). For analogous asymptotic expansions, see Refs. 25 and 55.

1. Single conducting sheet
Consider formulas (19) for Q±(ξ) and R±(ξ) with the functions PTM(ξ) and PTE(ξ) introduced in (13). We express the associated integrals

in the forms

Q±(ξ) = ±
1
iπ∫

∞e−i arg ξ

0
dϚ

Q(ξϚ)
Ϛ2 − 1

, R±(ξ) = ±
1
iπ∫

∞e−i arg ξ

0
dϚ

R(ξϚ)
Ϛ2 − 1

(±I ξ > 0),

where

Q(ζ) = ln(1 +
iωμσ
2k2

0

√

ζ2 − k2
eff), R(ζ) = ln

⎛

⎝
1 −

iωμσ
2

1
√

ζ2 − k2
eff

⎞

⎠
, R

√

ζ2 − k2
eff > 0.

First, let us focus on Q+(ξ). The numerator in the corresponding integrand is expressed as

Q(ξϚ) = ln(
iωμσ
2k2

0
ξϚ) + Q1(ξϚ), Q1(ζ) = ln

⎛
⎜
⎝

¿
Á
ÁÀ1 −

k2
eff

ζ2 +
2k2

0

iωμσ
1
ζ

⎞
⎟
⎠

.

Note that Q1(ζ) = O(ζ−1) as ζ →∞. Thus, by substitution of this Q(ξϚ) into the integral for Q+(ξ) and exact evaluation of the contribution of
the first term, we obtain25,55
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Q+(ξ) =
1
2

ln(
ωμσξ
2k2

0
) + O(1 + ln ξ

ξ
) as ξ →∞ in C+, (A1)

and the correction term can be systematically derived via the Mellin transform technique.57 In the above asymptotic formula for Q+(ξ), the
branch cut for the logarithm can lie in the lower half ξ-plane or the negative real axis. By symmetry, we have

Q−(ξ) =
1
2

ln(−
ωμσξ
2k2

0
) + O(1 + ln ξ

ξ
) as ξ →∞ in C−, (A2)

where the branch cut for the logarithm can lie in the upper half ξ-plane or the negative real axis. To reconcile the last two asymptotic formulas
for Q+(ξ) and Q−(ξ), we take the branch cut for each logarithm along the negative real axis. Accordingly, we verify that

Q+(ξ) + Q−(ξ) ∼ ln(
iωμσξ

2k2
0
) ∼ Q(ξ) as ξ →∞ in C+ and C−.

We now turn our attention to R+(ξ). We write

R(ξϚ) = ln(1 −
iωμσ
2ξϚ
) + R1(ξϚ), R1(ζ) = ln{1 −

iωμσ
2ζ

(1 − k2
eff/ζ

2)−1/2
− 1

1 − iωμσ/(2ζ)
}, (A3)

where R1(ζ) = O(ζ−3) as ζ →∞. The substitution of the above expression for R(ξϚ) into the integral for R+(ξ) yields

R+(ξ) =
1
π

ωμσ
2ξ

ln(
2ξ

ωμσ
) + O(1/ξ) as ξ →∞ in C+. (A4)

In the last formula, the logarithm comes from the first term appearing in (A3), while the O(1/ξ) correction term is attributed to both the first
and second terms appearing in (A3). Similarly, we have

R−(ξ) = −
1
π

ωμσ
2ξ

ln(−
2ξ

ωμσ
) + O(1/ξ) as ξ →∞ in C−. (A5)

We note in passing that R+(ξ) + R−(ξ) = O(1/ξ) as ξ →∞, as expected because the sum of R+(ξ) and R−(ξ) should be exactly equal to R(ξ).

2. Two coplanar conducting sheets
Consider integral formulas (19) for Q±(ξ) and R±(ξ) where the functions PTM(ξ) and PTE(ξ) are now defined by (43) (Sec. IX). The EP

is assumed to propagate along the joint boundary of two coplanar sheets of distinct, scalar surface conductivities σR and σL with σR
≠ σL and

σRσL
≠ 0. For this geometry, we have

Q(ζ) = ln
PR

TM(ζ)
PL

TM(ζ)
= ln PR

TM(ζ) − ln PL
TM(ζ) = ln(

σR

σL ) + O(1/ζ) as ζ →∞

and

R(ζ) = ln
PR

TE(ζ)
PL

TE(ζ)
= ln PR

TE(ζ) − ln PL
TE(ζ) = O(1/ζ) as ζ →∞

in the appropriately chosen branch of the logarithm, w = ln Pℓ
ϖ (ϖ = TM, TE and ℓ = R, L). By inspection of the resulting integrals for Q±(ξ)

and R±(ξ), here we realize that their treatment for a single sheet in Subsection 1 of the Appendix can be directly applied to the present setting
of two sheets. Without further ado, in regard to R±(ξ), we can assert that

R±(ξ) = ±
1
π

ωμ
2ξ
{σR ln(±

2ξ
ωμσR ) − σL ln(±

2ξ
ωμσL )} + O(1/ξ) as ξ →∞ in C±, (A6)

and thus, R±(ξ) = o(1). On the other hand, in regard to the asymptotics for Q±(ξ), we find

Q±(ξ) =
1
2

ln(
σR

σL ) + O(1 + ln ξ
ξ
) as ξ →∞ in C±, (A7)

with σR
≠ σL and σLσR

≠ 0.
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