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1. Introduction

Epitaxial growth has been extensively studied both exper-
imentally and theoretically, as a subject of technological 
importance and fundamental scientific interest. However, far-
from-equilibrium material systems often exhibit unanticipated 
behavior. Even in the relatively simple setting of homoepitaxial 

growth, the microscopic origin of complex phenomenology 
may take decades to fully understand. Consider, for example, 
the re-entrant ‘smooth’ growth observed in metal-on-metal 
epitaxy [1, 2]: it took nearly twenty years to discern the roles 
of the several atomistic mechanisms contributing to the non-
intuitive low-temperature behavior of such a simple system 
[3]. Discoveries of this kind have been largely enabled by 
improved simulations of crystal systems, which are aided in 
part by advances in computer hardware and algorithms.
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epitaxial growth. By using kinetic Monte Carlo (KMC) simulations of two lattice-gas models 
of crystal surfaces, we find scaling exponents that characterize roughening and coarsening at 
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salient interplay between step-edge barrier strength and transient kinetic processes.
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An aspect of homoepitaxy for which modern simulation 
capabilities may be crucial is the evolution of mounds during 
unstable growth. In this paper, we reexamine fundamental 
aspects of homoepitaxial growth by carrying out extensive 
atomistic simulations. We find that scaling exponents char-
acterizing unstable growth of mounds at long times have a 
complicated, previously unnoticed dependence on physical 
parameters that are intimately linked to key atomistic processes.

In contrast to heteroepitaxial mounding, which has a ther-
modynamic origin, many high-symmetry crystal surfaces admit 
a kinetically-induced mounding instability during growth [4]. 
Specifically, the Ehrlich–Schwoebel (ES) step-edge barrier to 
interlayer diffusion [5, 6] promotes a destabilizing uphill sur-
face current in the presence of external material deposition, 
leading to mound formation and steepening (see figure  1). 
After several monolayers of material deposition, however, the 
average mound slope tends to saturate [2, 7–10], a phenom-
enon that is known as slope selection. To explain the apparent 
stabilization of mound slope in experiments, two transient pro-
cesses have been proposed as the primary mechanisms: down-
ward funneling (DF) [2, 11–13] and transient mobility (TM) 
[11, 14–16]. In both DF and TM, freshly deposited atoms 
quickly relax to energetically favorable positions near depo-
sition sites, albeit in slightly different ways: DF is character-
ized by downward transport of deposited atoms, whereas TM 
may also involve significant lateral transport. The net effect in 
both cases is a slope-dependent, downhill current that com-
petes with the ES-barrier-induced uphill current. Without these 
downward transport mechanisms, the step-edge barrier would 
lead to slopes that increase indefinitely as the mounds grow.

Our goal with the present work is to show that the scaling 
behavior of homoepitaxially grown mounds in the presence 
of DF and TM is more complicated than previously thought. 
In particular, we illustrate the influence on related scaling 
exponents of a variety of kinetic processes such as ES barrier, 
step-edge diffusion, and transient processes associated with 
material deposition that contribute to a downhill current on 
simple cubic (SC) and body-centered cubic (BCC) crystal sur-
faces. To this end, we obtain and analyze a much more com-
prehensive data set than what has previously been available.

For given coverage, θ, useful statistical characterizations of 
homoepitaxial growth of mounds include the surface rough-
ness (root mean square deviation in surface height), w(θ), 
and the lateral mound size, rc(θ). For large enough coverage, 
θ ≫ 1, these quantities are generally expected to follow power 
laws of the form

w ∼ θβ (1a)

and

rc ∼ θn, (1b)

where β denotes the roughening exponent and n is the coars-
ening exponent. The symbol  ∼  expresses proportionality for 
high enough θ by omission of the related constant prefactor on 
the right-hand side. By equation (1), the average mound slope 
can be estimated by the ratio w/rc. Therefore, slope selec-
tion occurs when β − n becomes negligible. The existence of 
stable slopes and the precise nature of growth laws (1) depend 

on the conditions of growth, and can be sensitive to atomistic 
kinetic processes related to deposition and surface diffusion. 
For general reviews on this subject, see, e.g. [17, 18].

Exponents β and n have been studied previously by many 
researchers via analytical tools [19–31], computer simulations 
[3, 12, 13, 16, 32–39], and laboratory experiments [2, 7–10, 
40–42] (see section  2). We note in particular that Stroscio 
et  al measured n  =  0.16 for Fe/Fe(0 0 1), and that Zuo and 
Wendelken measured n  =  0.25 for Cu/Cu(0 0 1).

The results of our atomistic simulations indicate that these 
past studies are not definitive. Most notably, we find that the 
scaling exponents β and n vary continuously as a function of 
the model parameters related to atomistic processes that influ-
ence the mass current on a growing crystal surface. It is worth-
while to note that, in comparison to results presented, e.g. in 
[12, 33], our results here include more values for the step-edge 
barrier; and we also employ two transport mech anisms in the 
form of DF as well as TM. The latter improvement allows 
us to explore roughening and coarsening as a function of 
downward transport strength (which can be varied by varying 
the size of the TM search area; see section 3.3), which is not 
addressed in [12, 33]. Furthermore, our simulations account 
for a larger number of monolayers of deposition for all cases, 
in comparison to previous studies [12, 16, 33–35, 38, 39].  
Leveraging this newly obtained, extensive data, more accu-
rately computed coarsening exponents, and over a decade 
of additional literature, we can now re-examine some of the 
issues related to observations of earlier studies [8, 12, 16], as 
explained in section 2.

At this point, it is useful to make a distinction between the 
‘asymptotic’ behavior of unstable growth, in which scaling 
exponents of interest approach universal values for very large 
coverage, from ‘long-time’ behavior. At long times, exponents 
measured from data may differ from asymptotic values, but 
show little variation as time increases. This long-time but not 
asymptotic behavior is often appropriately referred to as the 
‘transient regime’, and extracted exponents are called effective 
scaling exponents. The asymptotic regime is not always prac-
tically attainable via atomistic simulations. However, slope 
selection (β ≈ n) is a good indication that asymptotic values 

Figure 1. Illustration of the effect of the ES step-edge barrier (side 
view). An adatom diffusing toward a descending step edge must 
overcome an additional energy barrier, E+ , in order to attach to 
the step. Larger barriers increase the probability that an adatom is 
reflected toward the center of the terrace.
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of exponents have been obtained. Traditionally, an appealing 
means of determining the asymptotic (in time or coverage) 
values of exponents β and n in equation  (1) has been the 
analysis of continuum models for crystal surfaces (see, e.g. 
[19, 24, 37]). This approach deserves particular attention, and 
has stimulated a plethora of studies. However, results of this 
approach may be deemed as questionable or incomplete since 
they are usually derived from phenomenology, with no direct 
connection to the key atomistic processes underlying epitaxial 
growth. At the same time, while experimental observations 
of the growth process are the preferred source of informa-
tion about power laws such as equation (1), the corresponding 
available data sets are limited. In light of these considerations, 
atomistic simulations capturing long-time behavior appear as 
a promising and viable alternative in cases where the asymp-
totic regime is out of reach.

In this paper, motivated by the need for more accurate and 
physically reliable computations of epitaxial growth, we pre-
sent extensive kinetic Monte Carlo (KMC) simulation results 
that study in detail the effect of different kinetic processes. 
For example, our computations include more than three dozen 
parameter sets, each of which involve several ensembles of 
simulated growth of 1000 monolayers of deposition on lattices 
of size 1000 × 1000, where we use dimensionless parameters 
and, thus, set the lattice constant, a, equal to unity (a  =  1). All 
simulations start with an initially perfectly flat surface (so that 
they always have the same initial conditions). These simula-
tions have enabled us to generate a data set that is much more 
comprehensive than the data previously available. The inter-
pretation of these results suggests new physical insights into 
unstable epitaxial growth, as we discuss below.

The remainder of the paper can be outlined as follows. 
Section 2 provides a review of previous works related to the 
scaling behavior of unstable epitaxial growth and further moti-
vates our present study. In section 3, we describe the lattice-
gas models that we employ in our KMC simulations including 
the basic solid-on-solid (SOS) model (section 3.1) and effect 
of ES barrier (section 3.2); and give details of the downward 
transport mechanisms DF (section 3.4) and TM (section 
3.3). In section 4, we discuss qualitative features of mound 
morph ology as a function of model parameters. In section 5, 
we quantitatively characterize different mounding scenarios, 
highlighting the dependence of roughening and coarsening 
exponents on the KMC model parameters. Finally, section 6 
concludes our work with a summary of our findings and an 
outline of open problems.

2. Past works and motivation

In this section, we review previous theoretical research on the 
scaling laws for roughening and coarsening during unstable 
homoepitaxial mound growth. This research includes both 
atomistic and continuum approaches. We also make an effort 
to place our findings in the context of these past works. 
Comprehensive reviews of a large part of the literature dis-
cussed here can be found in [17, 18].

2.1. Simulations of atomistic models

Next, we focus on theoretical approaches that rely on simula-
tions of key atomistic processes of epitaxial growth. To the 
best of our knowledge, Evans and coauthors are the first to 
suggest DF as a mechanism contributing to slope selection, 
and explore its consequences during growth [2, 11, 13, 34]. 
Their initial model of DF, which we employ in our own KMC 
simulations (figure 2), involves the descent of newly deposited 
atoms down to a site with ‘full support’, namely, the max-
imum number of neighbors in the next lower layer [2, 34]. A 
refinement of the original DF model, termed restricted DF, 
is introduced in [13] in order to more accurately capture low 
temperature deposition dynamics; in this version of DF, atoms 
do not necessarily descend to a site with full support.

In a similar vein as Evans [2], Šmilauer and Vvedensky 
show that slope selection is also a feature of an atomistic 
model including TM [15, 16]. In [16], the authors point out 
that selected slopes result from a competition between: (i) 
roughening, which increases the average slope; and (ii) coars-
ening, which decreases the slopes. Roughening is primarily 
influenced by the strength of the ES barrier, whereas coars-
ening is a result of mechanisms that fill in valleys between 
mounds; e.g. detachment of atoms from edges of steps or 
downward transport.

The TM scheme employed by Šmilauer and Vvedensky 
is one of only a few descriptions for transient diffusion of 
adatoms, or ‘hot precursors’, suitable for incorporation 
in KMC simulations [15, 16]. For this reason, we make 
use of their algorithm, described in [16], for KMC simula-
tions involving TM (figure 3). As detailed in sections  3–5, 
we thoroughly portray the consequences of this TM scheme 
by expanding available parameter sets of simulations, espe-
cially the range of ES barriers and ‘search radius’, R, i.e. the 
length scale for transient diffusion. Our results confirm that 
slope selection occurs in simulations including both ES bar-
riers and TM. However, additional findings in our simulations 
may suggest differences from the results in [16]. For instance, 
in the case of variable ES barriers, the authors in [16] claim 
that increasing the barrier strength decreases the coarsening 

Figure 2. Illustration of the basic DF mechanism (side view) [2], 
where freshly deposited atoms (rate F) relax to an adsorption site 
with the maximum number of neighbors in the layer below.
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rate. In fact, we observe the opposite effect: larger barriers 
may lead to larger coarsening exponents. Furthermore, as 
R increases, we observe a continuous change of the scaling 
exponent describing surface slope, which contrasts the sug-
gestion put forth in [16] that slopes remain constant for large 
enough R.

We should also highlight results in atomistic simulations 
of unstable epitaxial growth of mounds obtained by Amar and 
coauthors [3, 12, 33, 39, 43–45]. In [12], Amar and Family use 
KMC simulations with DF to study the roughening and coars-
ening of mounds, extending their previous results by consid-
ering a range of different ES barriers and deposition rates in 
their parameters. The coarsening rates for mounds computed 
in [12] are different in the respective regimes of small and 
large ES barriers. The authors in [12] conclude that: either (i) 
the combined cases with small and moderate barriers have an 
extended transient regime compared to the case with a large 
barrier; or (ii) there is a transition from an asymptotic coars-
ening rate to another based on a competition between kinetic 
processes influencing the coarsening of mounds. One such 
kinetic process is step-edge diffusion, i.e. the transport along 
a step edge of atoms with only a few in-plane near neighbors. 
This process is the primary focus of a follow-up paper by 
Amar [33]. In this work [33], the author concludes that the 
kink-Ehrlich–Schwoebel barrier can significantly impact the 
coarsening rate of mounds. Specifically, the incorporation of 
an infinite barrier of this type into the simulations leads to a 
slower coarsening compared to the case without such a bar-
rier, for both (0 0 1) and (1 1 1) surfaces.

At the risk of redundancy, we repeat that, in contrast to the 
results presented in [12, 33], our findings rely on five values 
for the step-edge barrier. In addition, we invoke two transport 
mechanisms in the form of DF as well as TM. Because of 
this latter improvement, we are able to explore roughening 

and coarsening as a function of transport strength, which is 
not addressed in [12, 33]. Furthermore, our simulation data 
account for 1000 monolayers of deposition for all cases, 
whereas previous simulation data only account for approxi-
mately 400 monolayers [12, 33]. Consequently, we believe 
that we can make more detailed observations related to tran-
sient versus asymptotic roughening and coarsening behavior 
in epitaxial systems (see sections 4 and 5).

2.2. Analysis and simulations of continuum models

Another approach to unstable homoepitaxial growth of 
mounds relies on the analysis or simulation of phenomeno-
logical continuum models of crystal surfaces [19–27, 29–31]. 
This type of study invokes a family of partial differential equa-
tions  (PDEs) by which the surface height profile in crystal 
growth becomes unstable toward mounding. This instability, 
which may result from the presence of ES barriers at step 
edges [4], enters the continuum evolution equations  through 
one of two plausible types of slope-dependent surface mass 
current. Specifically, the surface current either (a) promotes 
the continuous steepening of mounds, or (b) leads to slope 
selection.

In particular, Sander and coauthors are apparently the first 
researchers to study each type of surface current [7, 8]. The 
work reported in [8], which includes modeling and simula-
tion of crystal surfaces with slope selection, mainly focuses on 
a 6th-order PDE, which is distinct from the more frequently 
used 4th-order evolution equations  based on the use of the 
capillary term of surface diffusion by Mullins [46]. In their 
corresponding continuum model [8], these authors provide an 
argument for the possible exclusion of the 4th-order term on 
the basis that the system under investigation, namely, Fe on 
F(0 0 1) at room temperature, is irreversible. Numerical simu-
lations then reveal a coarsening exponent n ≃ 1/6 in this case 
[8]. Furthermore, in [8] the authors replace the 6th-order term 
in their simulated PDE with a 4th-order capillary term, and 
find that coarsening obeys a power law with n ≃ 1/4. This 
result suggests that there is a crossover of the coarsening expo-
nent depending on the relative importance of the 4th-order and 
6th-order terms in the PDE for the crystal surface height.

Our simulation results corroborate this speculation. We are 
tempted to entertain the scenario that under certain growth 
conditions both 4th-order and 6th-order terms are present 
in the appropriate continuum limit of the atomistic model. 
Furthermore, the step edge barrier may control the relative 
importance of each term, thus causing a continuous transition 
of the coarsening exponent, n, from 1/6 to 1/4. Our conclu-
sions are discussed in section 6.

Another noteworthy research effort, led by Siegert 
et al [19, 21, 22, 37], focuses on the analytical and numer-
ical investigation of PDEs with and without slope selec-
tion. By drawing an analogy with the coarsening dynamics 
encountered in phase ordering, which has been successfully 
described by Bray’s theory [47], these authors [19, 21] show 
that mounds, with typical size rc(θ), should coarsen with time 
(or, coverage θ) according to equation (1b) with n  =  1/3. This 

Figure 3. Illustration of the KMC prescription of TM, where 
freshly deposited atoms relax to a nearby site with highest 
coordination (top view). The site shown in green is the lattice site 
initially chosen for deposition, the square in blue contains the 
sites explored during TM, R defines the square where the search is 
performed, and the site shown in red is the final destination of the 
deposited atom after it has thermalized.
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exponent amounts to the Lifshitz–Slyozov–Wagner law [48, 
49]. However, this result [19, 21] contradicts experimental 
and numerical evidence, including simulations in [7, 8, 20], 
which have suggested that n ≃ 1/4. Later, Siegert discovers 
that his application of Bray’s theory [47], which presumes 
the existence of only one relevant length scale, is incorrect 
[37]. Specifically, in [37] the author points out that two length 
scales emerge in scenarios that admit square mounds: in addi-
tion to the typical mound size, rc, a second, long length scale 
describes the average spacing between occasional disloca-
tions (defects) in the superlattice formed by square mounds. 
These features do not neccessarily coarsen at the same rate. 
Before the appearance of this work [37], the assumption of 
a single length scale had not been questioned. In light of this 
discovery, coarsening exponents reported in earlier works 
should be interpreted with caution: it is possible that these 
works measure a combination of mound and dislocation 
coarsening rates instead of a rate pertaining exclusively to the 
coarsening of mounds.

Following the aforementioned breakthrough regarding the 
existence of two scales for mounds with square symmetry, 
Golubović et al [25, 27, 50] confirmed that coarsening expo-
nents depend on the crystalline symmetry. In these works, 
extensive simulations of PDE models with slope selection 
show that n ≃ 1/4 in cases with square symmetry, whereas 
n ≃ 1/3 for isotropic or hexagonal symmetry, independent 
of step-edge barrier strength. In [25], the authors argue that 
certain slope–slope correlation functions can be used to accu-
rately these correlation functions, which we employ in our our 
statistical characterization of mound morphologies (section 
2.3), can be found in section 5.

We should add a few more remarks on the relation of our 
work to the analytical and numerical studies performed on 
phenomenological continuum models, particularly [25, 37]. In 
these works, the authors attempt to obtain asymptotic values 
of scaling exponents for roughening and coarsening, which 
are not always practically attainable via atomistic simulations. 
Instead, our results pertain to long times, i.e. for up to 1000 
monolayers of deposition, which in cases without slope selec-
tion yield effective scaling exponents instead of asymptotic 
values. In spite of this difference in predictions, we are still 
able to apply the physical principles illustrated by continuum 
treatments: for example, our results are consistent with: (i) the 
realization of Siegert et al [37] that multiple long length scales 
should be accounted for when assessing the coarsening rate of 
square mounds; and (ii) the property that scaling exponents 
may be affected by the choice of reversible or irreversible 
growth (see [8] where the 4th-order versus 6th-order terms in 
PDEs for surface height are discussed).

2.3. Revisiting correlation functions

In this subsection, we revisit three kinds of correlation func-
tions that we employ in our statistical characterization of 
surface morphologies. We also explain how these functions 
are used to determine scaling exponents for roughening and 
coarsening.

The statistics of surface profiles obtained in KMC simula-
tions are most conveniently expressed via the height–height 
correlation function, Ghh(r, θ), and two slope–slope correlation 
functions, namely, the longitudinal slope–slope correlation 
function, Glss(r, θ), and the transverse slope–slope correlation 
function, Gtss(r, θ). Here, r = |r| is the polar distance where 
r denotes the position vector in the high-symmetry plane of 
the crystal. Let h(r, θ) denote the surface height as a function 
of position, r, and coverage, θ. The height–height correlation 
function is defined as

Ghh(r, θ) = ⟨h̃(r, θ)h̃(0, θ)⟩, (2)

where h̃(r, θ) = h(r, θ)− ⟨h(r, θ)⟩ and ⟨·⟩ denotes the 
average computed via a choice of the origin of the coordinate 
system and ensembles. This correlation function is sensitive 
to changes in surface height as a function of radial distance, r. 
It may be used to determine surface roughness, and in some 
cases the average lateral distance between mounds.

In a similar vein, the slope–slope correlation functions are 
defined by

Glss(r, θ) = ⟨Mx(re1, θ)Mx(0, θ)⟩, (3)

and

Gtss(r, θ) = ⟨My(re1, θ)My(0, θ)⟩, (4)

where e1 is the unit Cartesian vector parallel to the x-axis. 
Mℓ(r, θ) denotes the surface slope as the height difference 
between adjacent lattice sites in the ℓ-direction (ℓ = x, y). The 
slope Mx refers to the direction parallel to the displacement 
vector, re1, while by equation (4) the slope My  refers to the 
direction perpendicular to the displacement vector. These 
slope–slope correlation functions are sensitive to changes in 
the surface normal, restricted to the xy-plane, and therefore 
may be used to determine characteristic length scales for 
important features in directions parallel to the high-symmetry 
plane of the surface.

Correlation functions (2)–(4) can be used to estimate: (i) 
the surface roughness; (ii) the size of mounds; and, when there 
are two length scales present, (iii) the typical distance between 
defects in the superlattice of mounds. First, by use of equa-
tion (2), the surface roughness is computed via

w(θ) =
√

G(0, θ). (5)

Second, the average mound size or ‘critical radius’, rc(θ), cor-
responds to the first zero of either Ghh(r, θ) or Glss(r, θ) as 
a function of r, for fixed θ, depending on crystal symmetry. 
Specifically, if mounds have square symmetry, then equa-
tion  (3) is the appropriate correlation function to determine 
rc(θ) and the coarsening exponent n by equation (1b) [25]. In 
cases of other symmetries that admit only one macroscopic 
length scale, correlation function (2) is preferred for com-
puting rc(θ), for consistency with previous works (e.g. [16]). 
Third, the length scale of dislocations in the superlattice of 
(square) mounds can be computed as the distance r for which 
Gtss(r, θ) = 1

2 Gtss(0, θ). A discussion of equations  (3) and 
(4), as well as the role of multiple length scales in computing 
rc(θ), can be found in [25].
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Our choice of correlation functions in this paper has been 
mainly motivated by similar notions that permeate a large part 
of the literature. This choice better serves our present com-
parison purposes. Hence, the use of alternate statistical tools 
lies beyond the scope of this paper.

3. Models and kinetic processes

In this section, we outline the atomistic lattice-gas models that 
we use to study mound evolution.

3.1. Basic SOS model

A simple yet surprisingly accurate stochastic model of epi-
taxial growth is the SOS model [51]. By this model, atoms 
may arrange themselves in a SC crystal lattice, forming bonds 
with each of their nearest neighbors. Overhangs and bulk 
vacancies are forbidden. The crystal surface is represented by 
an array of height columns, which may change by a single 
atomic unit during every transition between distinct states in 
the configuration space as adsorbed atoms (adatoms) hop on 
the surface. Most transitions between nearby states follow 
Arrhenius rates. In the basic model, external deposition occurs 
at a rate F (measured in atoms per unit time, per lattice site).

We choose a particularly simple version of the SOS model 
where detachment from an island boundary is not allowed, and 
the only processes included are surface diffusion and edge dif-
fusion. Surface diffusion is described by the diffusion constant 
D = ν0 exp(−ES/kBT), where ν0 is an attempt frequency, ES 
is a surface bonding energy, kB is Boltzmann’s constant, and 
T is the substrate (absolute) temperature. Singly coordinated 
edge atoms are allowed to move along an island edge at a rate 
De = D exp(−EN/kBT), where EN can be interpreted as the 
bond strength of the in-plane bond between the edge atom and 
the island edge. There is no additional barrier for atoms to hop 
around a corner or around kinks (from a position with one 
nearest neighbor to a position with two or more nearest neigh-
bors). For all results shown below, we choose dimensionless 
parameters such that D/F  =  106, and De/D  =  0 for the case 
of no edge diffusion, and De/D  =  0.01 when we include edge 
diffusion. The value De/D  =  0.01 is chosen empirically so that 
edge diffusion leads to compact islands.

3.2. Step-edge barrier

The SOS transition rates (section 3.1) may be modified to 
account for ES barriers at step edges. In this case, the energy 
E± can be added to ES. In our notation, E+ is the additional 
barrier that an adatom needs to overcome in order to move 
across the step edge from the upper terrace to the lower ter-
race (to attach to the step edge). This is shown schematically 
in figure  1. In principle, we could also include a (possibly 
negative) energy barrier, E−, that is an additional barrier that 
needs to be overcome for attachment to a step edge from the 
lower terrace (not shown in figure 1). We will set E−  =  0 in 
an effort to use a minimal model that singles out the most 

important atomistic mechanism influencing mound evolution. 
Thus, the hopping rate for an adatom attaching to a step from 
above is D′ = D exp(−E+/kBT). The corresponding rate for 
an adatom attaching from below is D′′ = D exp(−E−/kBT) 
which simplifies to D′′ = D.

3.3. Transient mobility

Transient mobility is one of the downward transport mech-
anism discussed in this paper. We adopt the SOS model pre-
sented in [16], which is one of only a few KMC prescriptions 
for TM. Similar models of a TM-like deposition process are 
described earlier [14, 53, 54]. TM is usually invoked for mod-
eling growth that involves ‘hot precursors’. The deposition 
process in [16], depicted in figure 3, has two stages: first, a 
lattice site is selected at random for deposition. Next, a local 
search within the square of side length 2R  +  1 about the ini-
tially chosen site is performed for the site that would give the 
deposited atom highest coordination number, n. If the search 
results in a unique maximum coordination number among the 
affected collection of sites, the deposited atom is placed at 
that site. In the event of a tie, the site closest to the initial site 
is selected. In this deposition process, R is a ‘search radius’ 
which is supposed to reflect the transient kinetic energy 
imparted to the atom by deposition and adsorption. We note 
that different precursors can have different kinetic energies, 
which would require different search radii R in the simula-
tion. For simplicity we use just one value for R for all atoms 
which can be regarded as an average. For vicinal surfaces, 
TM may involve significant lateral mass transport without 
an uphill or downhill bias. For surfaces with mounds, on the 
other hand, regions between mounds have a high concentra-
tion of sites that would provide a deposited atom with two or 
more nearest neighbors, and therefore TM induces a downhill 
surface current.

Transient diffusion atoms, or ‘hot precursors’, received 
early attention as a candidate mechanism that could explain 
reflection high-energy electron diffraction (RHEED) oscilla-
tions observed in experiments of low-temperature metal-on-
metal growth [1]. However, the inclusion of this mechanism 
in analytical and numerical studies has been mostly lacking. 
While TM has been addressed recently via a rate-equation 
approach [55, 56], KMC studies with TM are rare. Following 
the work by Einstein and others [55, 56], Amar and Semaan 
recently performed a study [57] of both superdiffusion and 
subdiffusion in the submonolayer regime. Still, it seems that 
the most comprehensive study of the impact of TM on mound 
growth, found in [16], is by now over twenty years old.

In [16], the authors show that TM can effectively oppose 
the ES barrier and lead to slope stabilization during growth 
by using the search procedure described above. The extent 
of their simulation data, however, is quite limited: only 
two parameter sets are used. In section  5, we enrich their 
study [16] by methodically examining the effects of ES 
barrier strength, expressed in terms of Arrhenius factor 
D′/D = exp(−E+/kBT), and length R.
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3.4. Downward funneling

Downward funneling is the other downward transport mech-
anism discussed in this paper. The energetic barriers and 
trans ition rates of the SOS model can be readily incorporated 
into more complicated geometries, e.g. BCC or face-centered 
cubic geometries. We will consider BCC crystal geometries 
in addition to the SC geometry of the SOS model in order to 
include DF in one of our atomistic models. Surface diffusion 
and edge diffusion of singly coordinated edge atoms are the 
processes that are allowed in the BCC geometry and they are 
described by D and De, respectively. As for the cubic sym-
metry, De = D exp(−EN/kBT), where EN can again be inter-
preted as the bond strength of the in-plane bond between the 
edge atom and the island edge. There is no additional barrier 
for atoms to hop around a corner or around kinks.

Mimicking the SOS assumption in BCC geometry, the 
most basic prescription of DF avoids configurations involving 
overhangs and voids. This is achieved by asserting that any 
atom deposited to a site with three or fewer supporting atoms 
in a lower layer immediately relaxes to a site with full support, 
i.e. four supporting atoms in the next layer. A schematic of 
this DF process is shown in figure 2.

Alternate versions of DF have been proposed, including 
the restricted DF [13], a type of DF involving a certain prob-
ability of funneling upward [43, 44, 52], and the inclusion of 
low-barrier processes that favor downward transport [3]. Since 
each of these alternatives is expected to yield similar results, 
we utilize the above, simplest version of DF in this paper.

3.5. Validation

As described in sections 3.1–3.4, we have two different KMC 
models that use a cubic and a BCC geometry. Both codes have 
been validated extensively as follows: for both models, we 
have compared submonolayer results for the island densities, 
adatom densities, and island size distribution functions for dif-
ferent values of D/F to results that were previously published 
in the literature with other codes [61, 62]. We found excellent 
agreement for all these quantities (plots are not shown here). 
With the cubic SOS code we also reproduced the scaling expo-
nents and island morphologies that were published in [16] 
for TM. Again, we obtained excellent agreement within the 
statistical accuracy of such codes. For the code with a BCC 
geometry, we have compared the morphology of mounds and 
scaling exponents for surface roughening and mound coars-
ening to the results of [12] and also find agreement. We are 
therefore confident that our implementation of the KMC 
models described is correct.

4. Results: qualitative description of mounding

In this section, we discuss qualitative features of mound 
growth observed in our simulations, and how these features 
change with certain model parameters which are associated 
with key atomistic processes. Specifically, we focus on the 
effect of (a) ES barrier strength (measured in terms of D′/D), 

(b) step-edge diffusion (measured in terms of edge diffusion 
rate De/D), and (c) type and strength of downward transport 
(including the case of no transport). In figures 4–6, we com-
pare morphologies at θ = 1000 monolayers of coverage as 
parameters relevant to cases (a)–(c) are varied.

4.1. ES barrier strength

For an initially flat surface, in the presence of material deposi-
tion on the surface from above, adatoms nucleate and form 
small islands. These islands may then grow until they reach 
a critical size, Lc, for which second-layer nucleation becomes 
likely. This process may then repeat for the second and subse-
quent layers, until an initial mound morphology is established. 
If there is no ES barrier, E+   =  0, most atoms landing in the 
second layer are readily incorporated into a nearby island edge, 
often resulting in layer-by-layer growth. (Note that Lc is of the 
order of the typical island spacing which scales as (D/F)1/6 
for irreversible aggregation). On the other hand, if interlayer 
transport is inhibited, the probabililty of two or more adatoms 
being present on top of an island increases, thus resulting in 
more frequent second-layer nucleation events and smaller Lc 
(see [58] for further discussion on second-layer nucleation). 
Morphologies from KMC simulations are shown in figures 4 
and 5. These results provide visual confirmation that the island 
size decreases with the ES barrier strength (which is taken to 
increase from the left to the right column in figures 4 and 5).

4.2. Step-edge diffusion

The parameter De (step-edge diffusion rate) most directly 
affects the shape of mounds, but may indirectly influence 
mound size. An example of the former effect can be seen in 
the fractile nature of islands in diffusion limited aggregation, 
when thermal detachment from islands and transport along 
island edges are neglected. Even if thermal detachment is 
suppressed, diffusion along island edges leads to compact 
islands. In the extreme case of very large edge diffusion rate 
De, islands quickly approach their equilibrium crystal shape 
as determined by their Wulff plot [59]. This feature of islands 
with sufficiently high edge diffusion can be seen in figure 4, 
which shows morphologies from KMC simulations that are 
completely irreversible (with no thermal detachment) but 
allow high edge diffusivity (De/D  =  0.01). In most cases, 
mounds are nearly square. In contrast, when edge diffusion is 
turned off, mounds should retain some degree of irregularity. 
This effect is seen in figure 5, where thermal detachment and 
edge diffusion are both turned off.

One additional, indirect effect of edge diffusion is that it 
may enhance second-layer nucleation [60], and therefore 
contribute to smaller mounds. Comparing the corresponding 
panels in figures 4 and 5, for which all simulation parameters 
except edge diffusivity are the same, one can see that this 
claim is true for most cases by visual inspection. Deviating 
from this trend are the TM cases in the bottom row in each 
of figures 4 and 5. In regard to these simulation results, we 
believe that the effect of TM is more influential on mound 
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morphology than edge diffusion, e.g. islands are much more 
compact in the bottom row of figure  5 than in other cases. 
One might argue that TM with sufficiently large R mimics the 
effect of edge diffusion (see discussion in section 4.1).

4.3. Downward transport

Finally, we address the effect of type and strength of down-
ward transport. We consider three different downward trans-
port scenarios: no transport (deposited atoms land at the 
initially chosen deposition site for an SC crystal); transport in 
the presence of DF; and transport with TM. For simulations 
that include DF, the strength of downward transport is deter-
mined exclusively by the local geometry near a deposition 
site. In the presence of TM, we use the adjustable parameter 
R, which determines the search area. A large R can allow for 
a deposited atom to be incorporated into a lower layer several 
lattice sites away from the initially chosen deposition site. In 
fact, in the extreme case with R → ∞, deposited adatoms will 
always reach an island edge, if one exists, so that the surface 
grows layer by layer even in the presence of an infinite ES 
barrier. For decreasing R, there is competition between uphill-
current-inducing ES barriers and a downhill surface current 

associated with TM. This situation qualitatively mimics the 
case of DF, but we do not observe quantitative agreement. 
TM also contributes an uphill surface current when the local 
geometry allows this (e.g. see figure  3), whereas DF only 
allows for a downhill current.

Figures 4 and 5 demonstrate the abovementioned differ-
ences between different cases of transport: in both figures the 
top row includes no transport cases, the middle row shows 
the corresponding DF cases, and the bottom row includes TM 
with R  =  3. Lastly, in figure 6, we see the effect of increasing 
R from zero (top left), which is the same as the case of no 
transport, to R  =  11 (bottom right). In these plots, there is 
a transition from fractile-like islands to irregular mounds to 
square mounds. We observe that TM with large R not only 
approaches layer-by-layer growth but can also mimic high-
edge diffusion since the island shapes are close to square 
(bottom row of figure 6).

5. Results: quantitative description of mounding

In this section, we present simulation results for the scaling 
exponents of equation (1). In particular, we show the depend-
ence of these exponents on ES barrier strength (section 5.1) 

Figure 4. Surface morphologies from KMC simulations after 1000 monolayers of deposition when step-edge diffusion is included with 
De/D  =  0.01. Top row: no downward transport is present. Middle row: DF is included. Bottom row: TM with R  =  3. For all rows the 
strength of the step-edge (ES) barrier increases from left to right with D′/D = 0.1 (left column), D′/D = 0.01 (middle column), and 
D′/D = 0 (right column). Each panel represents a cross section of size 500 × 500 of the simulation lattice.
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Figure 5. Surface morphologies from KMC simulations after 1000 monolayers of deposition without step edge diffusion, De/D  =  0. Top 
row: no downward transport is present. Middle row: DF is included. Bottom row: TM with R  =  3. For all rows the strength of the step-edge 
(ES) barrier increases from left to right with the values D′/D = 0.1 (left column), D′/D = 0.01 (middle column), and D′/D = 0 (right 
column). Each panel represents a cross section of size 500 × 500 of the simulation lattice.

Figure 6. Surface morphologies from KMC simulations after 1000 monolayers of deposition when there is no diffusive interlayer transport 
(infinite ES barrier), no step edge diffusion, and TM is present. From left to right column: the respective values of R used are R = 0, 1, 3 
(top row), and R = 5, 7, 11 (bottom row). Each panel represents a cross section of size 500 × 500 of the simulation lattice.
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and TM radius, i.e. the strength of a transient kinetic process 
related to deposition (section 5.2). In addition, we show how 
the island shape, controlled by the edge diffusivity, De, affects 
these dependencies (section 5.3).

All scaling exponents that we report here are computed 
using the surface correlation functions described in sec-
tion 2.3. In each case, we carefully choose normalized cor-
relation functions, expressed by G(r, θ)/G(0, θ), that depend 
on coverage (time), θ, only through the average mound radius, 
rc(θ). Specifically, G(r, θ) must satisfy the scaling ansatz

G(r, θ) = f (r/rc)G(0, θ), (6)

where f (x ) is an unknown scaling function, which is deter-
mined via numerical simulations. Figures 7 and 8 show exam-
ples of the correlation functions that we employ, as well as the 
collapse of their rescaled data points in accordance with (6). 
Note that G(0, θ) = w2 (r, θ) if G is the height–height correla-
tion function of equation (2).

To be more precise, the exponents β and n that we pre-
sent in this section are obtained as follows. First, we plot the 

height–height correlation function, Ghh(r, θ). If the data of the 
scaled form of this function suitably collapses (as shown in 
the bottom panel of figure 7), only one length scale is pre-
sent. In this case, we obtain rc from the first zero crossing 
of Ghh(r, θ) and the respective roughness as defined in equa-
tion  (5). However, when there is no data collapse for Ghh , 
two length scales are present, namely, the average distance 
between mounds and the average distance between disloca-
tions in the superlattice of (square) mounds. In the case of two 
scales, we need to use the first zero crossing of slope–slope 
correlation function Glss(r, θ), as shown, for example, in the 
top panel of figure 8. (Accordingly, in the following data for 
n, we specify whether we used Ghh(r, θ) or Glss(r, θ) to obtain 
n.) Note that the first zero crossing of slope–slope correlation 
function Gtss(r, θ) can in principle be used to extract the length 
scale of the dislocations. However, this length scale is compa-
rable to the size of the simulation lattice; thus, any value that 
we would extract for this length scale is not very meaningful. 
Therefore, we do not pursue this task in this paper.

Figure 7. Plots of the height–height correlation function, 
Ghh(r, θ), versus distance r (top panel), and the scaled version 
Ghh(r, θ)/Ghh(0, θ) versus r/rc (bottom panel) for KMC simulations 
with TM (R  =  3). The simulations include an infinite ES barrier 
(D′/D = 0), and do not include edge diffusion.

Figure 8. Plots of the slope–slope correlation functions, Glss and 
Gtss, versus distance r for KMC simulations with TM (R  =  3). Top 
panel: longitudinal slope–slope correlation function, Glss(r, θ), 
versus r/rc; see equation (3). Bottom panel: transverse slope–slope 
correlation function, Gtss(r, θ), versus r; see equation (4). The 
simulations include an infinite ES barrier (D′/D = 0), and do not 
include edge diffusion. The discontinuity shown in the longitudinal 
correlation function (top panel) is likely due to the discrete nature 
of features when r = 1, 2.
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Once the surface roughness and average mound radius 
are computed, we extract the exponents β and n of equa-
tion (1) in the long-time regime of our atomistic simulations. 
Specifically, β and n are the respective slopes of the lines fitted 
to data points (log θ, log w) and (log θ, log rc), for sufficiently 
large θ. Figures 9 and 10 show typical regression lines used 
to measure these long-time scaling exponents for roughening 
and coarsening. In most cases, log–log plots such as those in 
figures 9 and 10 reveal approximately linear behavior in data 
between roughly 100 monolayers and 1000 monolayers of 
coverage.

In the remainder of this section, we summarize simulation 
results for exponents β and n for more than 40 parameter sets 
(see sections 5.1–5.3). In each case, our correlation functions 
result from averages over 4–10 independent KMC simulations 
on lattices of size either 1000 × 1000 or 500 × 500.

5.1. ES barrier dependence

Intuitively, one expects surfaces grown with large ES barriers 
to roughen faster than those with small (but nonzero) ES bar-
riers. This behavior, discussed in section 4, is revealed by the 
data of table 1 which shows β and n as a function of the ES 
barrier strength. All other parameters are fixed; specifically, 
D/F  =  106, detachment of atoms from step edges is forbidden, 
and hopping along island edges is efficient (De/D  =  0.01). In 
the case of TM, we present results with different values for the 
search radius R. The case with D′/D = 1 is shown in table 1 
as a reference case, but is not discussed since layer-by-layer 
growth is preferred over mounding when D′ = D. The expo-
nents reported in table 1 for DF are obtained from the slopes 
shown in figure 9.

Figure 9. Log–log plots of the surface roughness (top panel) 
and mound radius (bottom panel) as a function of coverage, θ, 
for different values of the ES barrier. The data is computed from 
KMC simulations with TM (R  =  3), with high edge diffusion 
(De/D  =  0.01). The solid lines are a guide to the eye and correspond 
to the slope in the long-time regime.

Figure 10. Log–log plots of the surface roughness (top panel) 
and mound radius (bottom panel) as a function of coverage, θ, for 
different values of the TM search area as defined by R. The data 
is computed from KMC simulations with TM, high edge diffusion 
with De/D  =  0.01, and infinite ES barriers (no diffusive interlayer 
transport). The solid lines are a guide to the eye and correspond to 
the slope in the long-time regime.
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Table 1 shows an increase of β for DF as the barrier 
increases (D′/D decreases) from β = 0.28 for the smallest 
barrier to β = 0.36 for an infinite ES barrier. In the case with 
TM, β changes very little as a function of D′/D for all values 
of R (ignoring the case D′/D = 1). The coarsening exponent, 
n, increases with the ES barrier strength from 0.24 ≃ 1/4 to 
0.33 ≃ 1/3 for DF. For TM, the coarsening exponent increases 
as well as D′/D decreases, and n changes from 0.17 to 0.23 for 
TM with R  =  3, and from 0.17 to 0.25 for R  =  5. The increase 
is a little less pronounced for R  =  7, and n changes from 0.21 
to 0.23. This increase of n is in contrast to results in [16] where 
a decrease of the coarsening exponent with increasing ES bar-
rier was reported. We note that the experiments by Zuo and 
Wendelken [9] reported a coarsening exponent of n  =  0.25 
for Cu/Cu(0 0 1). This exponent agrees with our results for DF 
and moderate ES barriers with D/D  =  10−1, as well as our 
results for TM and larger ES barriers. DFT results of Yildirim 
and Rahman [63] suggest that the additional step edge barrier 
for Cu/Cu(0 0 1) is around 60 meV, which at the experimental 
temperature of [9] corresponds to a value of D/D ≃ 10−1. 
We therefore speculate that for this system DF is the relevant 
mechanism for downward transport. On the other hand, the 
value n  =  0.16 reported for Fe/Fe(0 0 1) [8] does not agree 
with any of our simulations.

The simultaneous increase of these exponents is related to 
slope selection. In the asymptotic (with time) scaling regime, 
β and n should be equal, which is true for several cases in 
table 1. In particular, in the case with DF we observe slope 
selection with exponents that increase continuously as a func-
tion of the step-edge barrier strength. This observation should 

be contrasted to previous results where usually only one value 
for the exponents was reported. In the case with TM and 
R = 3, 5, our results do not predict slope selection, while we 
predict slope selection for TM and R  =  7. This dependence of 
slope selection on the search area R is discussed more in sec-
tion 5.2. We note that it is also possible that in fact the values 
for both β and n for TM that are reported in table 1 will con-
tinue to change until they become equal, so that the average 
surface slope is stabilized in the asymptotic regime.

5.2. TM search area dependence

In the case with TM, recall that the parameter R defines the 
size of the search area for freshly deposited atoms. This R 
can be interpreted as a parameter that controls the strength 
or efficiency for downward transport. In addition, R can be 
viewed as a length that effectively increases surface diffusion 
and step edge diffusion in the simulations, as is discussed in 
more detail below.

It has been claimed that the exact value of R used in simu-
lations has little or no effect on the scaling exponents [16]. 
Table 2 summarizes our results for scaling exponents β and n 
for different values of R in the presence of an infinite ES bar-
rier (D′/D = 0) and step edge diffusion with De/D  =  0.01. 
Clearly, by our simulations β decreases from 0.40 to 0.22 as 
R increases from 1 to 7. The exponent n also changes, but in 
a less systematic way. Specifically, n increases as R is varied 
from R  =  1 to R  =  5, and one might argue that n saturates 
for R  =  7. We observe slope selection for R  =  7, and argu-
ably (within the accuracy of our method of extracting expo-
nents) for R  =  5. For larger values of R we do not observe 
slope selection.

We speculate that the following argument explains these 
results: when R  =  0, there is no downward transport, and 
hence there is no slope selection. Small but finite values of 
R (e.g. R  =  1 and R  =  3) do not suffice to cause downward 
transport that would lead to slope selection on the timescale 
of our simulations, though it is possible that slope selection 
occurs for much larger coverages. One could say that the 
values R  =  1 and R  =  3 are too close to R  =  0. Slope selec-
tion is only attained for intermediate values of R (in this case 
R  =  5 and R  =  7). On the other hand, in regard to large values 
of R, the value R  =  11 corresponds to a very different case, 

Table 2. Scaling exponents β and n for TM as a function of R with 
D′/D = 0, and step edge diffusion with De/D  =  0.01. In each case, 
exponents are based on the longitudinal slope–slope correlation 
function, Glss(r, θ) (equation (3)).

R β n

0 0.50 ≃0
1 0.40 0.22
3 0.36 0.23
5 0.28 0.25
7 0.22 0.22
11 0.23 0.29

Table 3. Scaling exponents β and n for DF and TM as a function of 
the step edge barrier D′/D, with De/D  =  0 and R  =  3 (for the case 
with TM). In each case, exponents are based on the height–height 
correlation function, Ghh(r, θ) (equation (2)).

DF TM (R  =  3)

D′/D β n β n

100 LBL 0.69 0.20
10−1 0.29 0.13 0.29 0.13
10−2 0.18 0.18 0.22 0.18
10−3 0.18 0.23 0.21 0.21
10−∞ 0.18 0.33 0.24 0.24

Table 1. Scaling exponents β and n for the separate cases with DF 
and TM as a function of step edge barrier D′/D, with De/D  =  0.01 
and R  =  3. In each case, exponents are based on the longitudinal 
slope–slope correlation function, Glss(r, θ) (equation (3)), except for 
TM when D′/D = 10− 1.

DF TM (R  =  3) TM (R  =  5) TM (R  =  7)

D′/D β n β n β n β n

100 0.53 0.21 0.57 0.25 0.38 0.24 0.27 0.24
10−1 0.28 0.24 0.34 0.17 0.26 0.17 0.23 0.21
10−2 0.29 0.29 0.34 0.20 0.26 0.22 0.22 0.22
10−3 0.31 0.31 0.35 0.21 0.27 0.24 0.22 0.23
10−∞ 0.36 0.33 0.36 0.23 0.28 0.25 0.22 0.23
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and in fact we believe that this is not physically meaningful. 
For R  =  11, the search area is of the order of the size of an 
island (or mound). Therefore, TM allows adatoms to attach to 
the other side of an island, and even to a different island. Large 
values of R effectively induce layer-by-layer growth (without 
mounds). This effect is also present when there is no step edge 
diffusion. We further discuss this effect in section 5.3.

5.3. Role of edge diffusion

In addition, we examine the effect of the step edge barrier and 
size of the search area, defined by R, during TM when there is 
no step edge diffusion (De/D  =  0). The data in tables 3 and 4 
reproduces the data in tables 1 and 2, respectively, yet without 
edge diffusion. Setting De/D  =  0 here primarily affects sur-
face roughness, which is higher than in the case with nonzero 
edge diffusion. While this claim seems counter-intuitive at 
first, it can actually be explained easily: when edge diffusion 
is present, the island shapes are more compact. As a result, 
the average distance from any site on top of an island to the 
closest step edge increases as edge diffusion increases. Hence, 
second-layer nucleation becomes more likely, and the system 
roughens faster.

As D′/D increases, the coarsening exponent, n, increases 
for both DF and TM. The computed values of n are close to 
the ones for the case with edge diffusion (see table  1). On 
the other hand, the behavior of the roughening exponent, β, 
is different. For both DF and TM, exponent β decreases when 
D′/D changes from D′/D = 10− 1 to 10−2; but β is almost 
constant as D′/D decreases further. By our simulation results, 
we observe slope selection in a few cases, but not in all. We 
speculate that the exponents are still changing with time, or 
that the fractal nature of the island edges (that can clearly be 
seen for example in figures 5 and 6) affects the roughening 
and coarsening behavior (see below).

In regard to TM, in table  3 we show the dependence of 
exponents β and n on D′/D for R  =  3. As R increases, the 
islands become more compact, as explained above. By com-
paring the data of tables  2 and 4 in the case with TM, we 
notice that for R  =  5 and R  =  7 the computed values of β 
and n are quite close, since the increased value of R mimics 
step edge diffusion. Without edge diffusion, we see in table 4 
a behavior of the scaling exponents that is consistent with 

slope selection for R  =  3 and R  =  5. As R increases further, 
we find that β − n < 0, which means that slopes are actually 
decreasing without slope selection. We repeat that the value 
R  =  11, or larger values of R, are not physically meaningful, 
because atoms that are deposited on the surface from above 
can attach to the other side on an island, or to other islands. 
In fact, as R increases further (and approaches the linear size 
of the simulation lattice), one tends to achieve perfect layer-
by-layer growth, because there is always a preferred site in a 
lower layer until the layer is filled completely. This trend is 
evident in figure 6 for R  =  11.

In regard to table 4, we do not observe slope selection for 
R  =  1. In this case, island edges are quite rough and can be 
described as fractal-like. While we can certainly compute a 
value of the ‘slope’ according to our definition, we argue it is 
not physically clear what the slope is. Therefore, it is not sur-
prising that ‘slope selection’ is not attained. Also, as we dis-
cuss in section 5.2, R  =  1 might simply be too close to R  =  0.

6. Discussion and conclusion

In this paper, we presented and discussed results of extensive 
KMC simulations that explore the dependence of the rough-
ening and coarsening exponents, β and n, for mound forma-
tion on the underlying atomistic model parameters. Our main 
conclusions are: (i) the asymptotic scaling exponents do not 
just attain one universal value based on crystalline symmetry, 
but instead depend on details of atomistic processes; and (ii) 
effective scaling exponents measured in the long-time regime 
change continuously as a function of simulation parameters.

This behavior of our simulation results is best illustrated 
via the observed dependence of β and n as a function of the 
step edge barrier D′/D in the presence of edge diffusion. 
When DF is present in our KMC simulations, both exponents 
increase from 1/4 to 1/3 as the step edge barrier increases, and 
there is slope selection for all cases (see table 1). For TM in 
our simulations, n increases from 0.17 to 1/4 when R  =  3 and 
R  =  5, and there is no slope selection (table 1). To place these 
results in the context of some past works, note that continuum 
theories for coarsening of surfaces have predicted a scaling 
exponent of n  =  1/6 if a 6th-order term is the highest-order 
term in the evolution equation for the surface height. In con-
trast, if the highest-order term in the evolution equation is of 
4th order, the continuum prediction is n  =  1/4. Intrigued by 
our simulation results, we speculate that under certain growth 
conditions both (4th- and 6th-order) terms are present in the 
appropriate continuum limit of the atomistic model. The step 
edge barrier plausibly controls the relative importance of each 
term, thus leading to a continuous transition of n from 1/6 
to 1/4. Our results for the dependence of n on the size of the 
search area, R, suggest a similar, continuous transition from 
1/6 to 1/4 (see tables 1, 2, and 4).

In the absence of edge diffusion, when De/D  =  0, we reach 
similar conclusions. The corresponding data can be seen in 
tables 3 and 4, which demonstrate continuous changes of the 
scaling exponents β and n with model parameters. However, 

Table 4. Scaling exponents β and n in the case with TM as a 
function of R with D′/D = 0 and De/D  =  0. When R = 0, 1, 3, 
exponents are based on the height–height correlation function, 
Ghh(r, θ) (equation (2)). For R ! 5, Glss(r, θ) (equation (3)) is 
used since the square symmetry of mounds is more emphatic; see 
figure 6.

R β n

0 0.50 ≃0
1 0.23 0.18
3 0.24 0.24
5 0.22 0.25
7 0.21 0.26
11 0.22 0.27
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in the case without edge diffusion, the results are more com-
plicated because the island shape is altered significantly.

It is worthwhile to discuss the occurrence (when β ≃ n) 
or lack of slope selection in our simulations. As mentioned 
above, we do observe slope selection in some cases, but not 
in all cases. There are several possible reasons for the lack of 
slope selection in some cases. From a continuum (phenom-
enological) perspective, it is tempting to attribute this simula-
tion result to the simultaneous presence of 4th- and 6th-order 
terms in an evolution equation  for the surface height at the 
macroscale. The combination of these two terms may in turn 
result in effective exponents. The relative importance of these 
two terms might be different for the roughening and the coars-
ening exponent. Although this argument is appealing and inter-
esting, it is incomplete since it is based on phenomenology.

Another possibility of explaining the lack of slope selection 
in some cases is that the corresponding simulations take place 
in an extended intermediate (long-time) regime, and have not 
yet reached the asymptotic regime required for slope selec-
tion. Although our simulations have reached coverages that 
are larger than those of previous works, we may not as yet rule 
out that we have not reached the asymptotic limit in all cases 
of physical interest. However, we note that all our exponents 
were obtained from log–log plots with (essentially) straight 
lines that extend over at least one decade. This gives us con-
fidence that we either have reached the asymptotic regime, or 
that we are much closer to it than previous studies.

We also want to suggest a third possible reason for the lack 
of slope selection in some cases. As we discuss in sections 2 and 
5, for simulations with square symmetries there are two length 
scales that are present: the length scale that is associated with the 
mound size (defined by rc), and the length scale associated with 
the distance between dislocations in the superlattice of (square) 
mounds. As explained above, we always use the proper corre-
lation function Ghh(r, θ) or Glss(r, θ) when we measure n, and 
we are confident that n does indeed describe the scaling of the 
feature size. But we are not certain whether or not the roughness 
(and hence β) might be affected by the presence of a second 
length scale. We believe that the importance of the second length 
scale is indeed a subject that deserves further study.
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