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0.1 Preface

This book is a course of lectures on the mathematics of actuarial science. The
idea behind the lectures is as far as possible to deduce interesting material on
contingent present values and life tables directly from calculus and common-
sense notions, illustrated through word problems. Both the Interest Theory
and Probability related to life tables are treated as wonderful concrete appli-
cations of the calculus. The lectures require no background beyond a third
semester of calculus, but the prerequisite calculus courses must have been
solidly understood. It is a truism of pre-actuarial advising that students who
have not done really well in and digested the calculus ought not to consider
actuarial studies.

It is not assumed that the student has seen a formal introduction to prob-
ability. Notions of relative frequency and average are introduced first with
reference to the ensemble of a cohort life-table, the underlying formal random
experiment being random selection from the cohort life-table population (or,
in the context of probabilities and expectations for ‘lives aged x’, from the
subset of lx members of the population who survive to age x). The cal-
culation of expectations of functions of a time-to-death random variables is
rooted on the one hand in the concrete notion of life-table average, which is
then approximated by suitable idealized failure densities and integrals. Later,
in discussing Binomial random variables and the Law of Large Numbers, the
combinatorial and probabilistic interpretation of binomial coefficients are de-
rived from the Binomial Theorem, which the student the is assumed to know
as a topic in calculus (Taylor series identification of coefficients of a poly-
nomial.) The general notions of expectation and probability are introduced,
but for example the Law of Large Numbers for binomial variables is treated
(rigorously) as a topic involving calculus inequalities and summation of finite
series. This approach allows introduction of the numerically and conceptually
useful large-deviation inequalities for binomial random variables to explain
just how unlikely it is for binomial (e.g., life-table) counts to deviate much
percentage-wise from expectations when the underlying population of trials
is large.

The reader is also not assumed to have worked previously with the The-
ory of Interest. These lectures present Theory of Interest as a mathematical
problem-topic, which is rather unlike what is done in typical finance courses.
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Getting the typical Interest problems — such as the exercises on mortgage re-
financing and present values of various payoff schemes — into correct format
for numerical answers is often not easy even for good mathematics students.

The main goal of these lectures is to reach — by a conceptual route —
mathematical topics in Life Contingencies, Premium Calculation and De-
mography not usually seen until rather late in the trajectory of quantitative
Actuarial Examinations. Such an approach can allow undergraduates with
solid preparation in calculus (not necessarily mathematics or statistics ma-
jors) to explore their possible interests in business and actuarial science. It
also allows the majority of such students — who will choose some other av-
enue, from economics to operations research to statistics, for the exercise of
their quantitative talents — to know something concrete and mathematically
coherent about the topics and ideas actually useful in Insurance.

A secondary goal of the lectures has been to introduce varied topics of
applied mathematics as part of a reasoned development of ideas related to
survival data. As a result, material is included on statistics of biomedical
studies and on reliability which would not ordinarily find its way into an
actuarial course. A further result is that mathematical topics, from differen-
tial equations to maximum likelihood estimators based on complex life-table
data, which seldom fit coherently into undergraduate programs of study, are
‘vertically integrated’ into a single course.

While the material in these lectures is presented systematically, it is not
separated by chapters into unified topics such as Interest Theory, Probability
Theory, Premium Calculation, etc. Instead the introductory material from
probability and interest theory are interleaved, and later, various mathemat-
ical ideas are introduced as needed to advance the discussion. No book at
this level can claim to be fully self-contained, but every attempt has been
made to develop the mathematics to fit the actuarial applications as they
arise logically.

The coverage of the main body of each chapter is primarily ‘theoretical’.
At the end of each chapter is an Exercise Set and a short section of Worked
Examples to illustrate the kinds of word problems which can be solved by
the techniques of the chapter. The Worked Examples sections show how
the ideas and formulas work smoothly together, and they highlight the most
important and frequently used formulas.
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Chapter 1

Basics of Probability and the
Theory of Interest

The first lectures supply some background on elementary Probability Theory
and basic Theory of Interest. The reader who has not previously studied these
subjects may get a brief overview here, but will likely want to supplement
this Chapter with reading in any of a number of calculus-based introductions
to probability and statistics, such as Larson (1982), Larsen and Marx (1985),
or Hogg and Tanis (1997) and the basics of the Theory of Interest as covered
in the text of Kellison (1970) or Chapter 1 of Gerber (1997).

1.1 Probability, Lifetimes, and Expectation

In the cohort life-table model, imagine a number l0 of individuals born
simultaneously and followed until death, resulting in data dx, lx for each
age x = 0, 1, 2, . . ., where

lx = number of lives aged x (i.e. alive at birthday x )

and
dx = lx − lx+1 = number dying between ages x, x+ 1

Now, allowing the age-variable x to take all real values, not just whole
numbers, treat S(x) = lx/l0 as a piecewise continuously differentiable non-

1
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increasing function called the “survivor” or “survival” function. Then for all
positive real x, S(x)− S(x + t) is the fraction of the initial cohort which
fails between time x and x+ t, and

S(x)− S(x+ t)

S(x)
=

lx − lx+t
lx

denotes the fraction of those alive at exact age x who fail before x+ t.

Question: what do probabilities have to do with the life table
and survival function ?

To answer this, we first introduce probability as simply a relative fre-
quency, using numbers from a cohort life-table like that of the accompanying
Illustrative Life Table. In response to a probability question, we supply the
fraction of the relevant life-table population, to obtain identities like

Pr(life aged 29 dies between exact ages 35 and 41 or between 52 and 60 )

= S(35)− S(41) + S(52)− S(60) =
{

(l35 − l41) + (l52 − l60)
}/

l29

where our convention is that a life aged 29 is one of the cohort surviving to
the 29th birthday.

The idea here is that all of the lifetimes covered by the life table are
understood to be governed by an identical “mechanism” of failure, and that
any probability question about a single lifetime is really a question concerning
the fraction of those lives about which the question is asked (e.g., those alive
at age x) whose lifetimes will satisfy the stated property (e.g., die either
between 35 and 41 or between 52 and 60). This “frequentist” notion of
probability of an event as the relative frequency with which the event occurs
in a large population of (independent) identical units is associated with the
phrase “law of large numbers”, which will bediscussed later. For now, remark
only that the life table population should be large for the ideas presented so
far to make good sense. See Table 1.1 for an illustration of a cohort life-table
with realistic numbers.

Note: see any basic probability textbook, such as Larson (1982), Larsen
and Marx (1985), or Hogg and Tanis (1997) for formal definitions of the
notions of sample space, event, probability, and conditional probability. The
main ideas which are necessary to understand the discussion so far are really
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Table 1.1: Illustrative Life-Table, simulated to resemble realistic US (Male)
life-table. For details of simulation, see Section 3.4 below.

Age x lx dx x lx dx

0 100000 2629 40 92315 295
1 97371 141 41 92020 332
2 97230 107 42 91688 408
3 97123 63 43 91280 414
4 97060 63 44 90866 464
5 96997 69 45 90402 532
6 96928 69 46 89870 587
7 96859 52 47 89283 680
8 96807 54 48 88603 702
9 96753 51 49 87901 782

10 96702 33 50 87119 841
11 96669 40 51 86278 885
12 96629 47 52 85393 974
13 96582 61 53 84419 1082
14 96521 86 54 83337 1088
15 96435 105 55 82249 1213
16 96330 83 56 81036 1344
17 96247 125 57 79692 1423
18 96122 133 58 78269 1476
19 95989 149 59 76793 1572
20 95840 154 60 75221 1696
21 95686 138 61 73525 1784
22 95548 163 62 71741 1933
23 95385 168 63 69808 2022
24 95217 166 64 67786 2186
25 95051 151 65 65600 2261
26 94900 149 66 63339 2371
27 94751 166 67 60968 2426
28 94585 157 68 58542 2356
29 94428 133 69 56186 2702
30 94295 160 70 53484 2548
31 94135 149 71 50936 2677
32 93986 152 72 48259 2811
33 93834 160 73 45448 2763
34 93674 199 74 42685 2710
35 93475 187 75 39975 2848
36 93288 212 76 37127 2832
37 93076 228 77 34295 2835
38 92848 272 78 31460 2803
39 92576 261
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matters of common sense when applied to relative frequency but require
formal axioms when used more generally:

• Probabilities are numbers between 0 and 1 assigned to subsets of the
entire range of possible outcomes (in the examples, subsets of the in-
terval of possible human lifetimes measured in years).

• The probability P (A ∪ B) of the union A ∪ B of disjoint (i.e.,
nonoverlapping) sets A and B is necessarily the sum of the separate
probabilities P (A) and P (B).

• When probabilities are requested with reference to a smaller universe of
possible outcomes, such as B = lives aged 29, rather than all members
of a cohort population, the resulting conditional probabilities of events
A are written P (A |B) and calculated as P (A ∩ B)/P (B), where
A ∩B denotes the intersection or overlap of the two events A, B.

• Two events A, B are defined to be independent when P (A ∩ B) =
P (A)·P (B) or — equivalently, as long as P (B) > 0 — the conditional
probability P (A|B) expressing the probability of A if B were known
to have occurred, is the same as the (unconditional) probability P (A).

The life-table data, and the mechanism by which members of the popula-
tion die, are summarized first through the survivor function S(x) which at
integer values of x agrees with the ratios lx/l0. Note that S(x) has values
between 0 and 1, and can be interpreted as the probability for a single indi-
vidual to survive at least x time units. Since fewer people are alive at larger
ages, S(x) is a decreasing function of x, and in applications S(x) should
be piecewise continuously differentiable (largely for convenience, and because
any analytical expression which would be chosen for S(x) in practice will
be piecewise smooth). In addition, by definition, S(0) = 1. Another way of
summarizing the probabilities of survival given by this function is to define
the density function

f(x) = −dS

dx
(x) = −S ′(x)

as the (absolute) rate of decrease of the function S. Then, by the funda-
mental theorem of calculus, for any ages a < b,
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P (life aged 0 dies between ages a and b) = (la − lb)/l0

= S(a)− S(b) =

∫ b

a

(−S ′(x)) dx =

∫ b

a

f(x) dx (1.1)

which has the very helpful geometric interpretation that the probability of
dying within the interval [a, b] is equal to the area under the curve y = f(x)
over the x-interval [a, b]. Note also that the ‘probability’ rule which assigns
the integral

∫

A
f(x) dx to the set A (which may be an interval, a union

of intervals, or a still more complicated set) obviously satisfies the first two
of the bulleted axioms displayed above.

The terminal age ω of a life table is an integer value large enough that
S(ω) is negligibly small, but no value S(t) for t < ω is zero. For practical
purposes, no individual lives to the ω birthday. While ω is finite in real
life-tables and in some analytical survival models, most theoretical forms for
S(x) have no finite age ω at which S(ω) = 0, and in those forms ω =∞
by convention.

Now we are ready to define some terms and motivate the notion of ex-
pectation. Think of the age T at which a specified newly born member of
the population will die as a random variable, which for present purposes
means a variable which takes various values x with probabilities governed
by the life table data lx and the survivor function S(x) or density function
f(x) in a formula like the one just given in equation (1.1). Suppose there is a
contractual amount Y which must be paid (say, to the heirs of that individ-
ual) at the time T of death of the individual, and suppose that the contract
provides a specific function Y = g(T ) according to which this payment
depends on (the whole-number part of) the age T at which death occurs.
What is the average value of such a payment over all individuals whose life-
times are reflected in the life-table ? Since dx = lx − lx+1 individuals (out
of the original l0 ) die at ages between x and x+ 1, thereby generating a
payment g(x), the total payment to all individuals in the life-table can be
written as

∑

x

(lx − lx+1) g(x)

Thus the average payment, at least under the assumption that Y = g(T )
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depends only on the largest whole number [T ] less than or equal to T , is

∑

x (lx − lx+1) g(x) / l0 =
∑

x (S(x)− S(x+ 1))g(x)

=
∑

x

∫ x+1

x
f(t) g(t) dt =

∫∞
0

f(t) g(t) dt

}

(1.2)

This quantity, the total contingent payment over the whole cohort divided by
the number in the cohort, is called the expectation of the random payment
Y = g(T ) in this special case, and can be interpreted as the weighted average
of all of the different payments g(x) actually received, where the weights
are just the relative frequency in the life table with which those payments
are received. More generally, if the restriction that g(t) depends only on
the integer part [t] of t were dropped , then the expectation of Y = g(T )
would be given by the same formula

E(Y ) = E(g(T )) =

∫ ∞

0

f(t) g(t) dt

The last displayed integral, like all expectation formulas, can be under-
stood as a weighted average of values g(T ) obtained over a population,
with weights equal to the probabilities of obtaining those values. Recall from
the Riemann-integral construction in Calculus that the integral

∫

f(t)g(t)dt
can be regarded approximately as the sum over very small time-intervals
[t, t + ∆] of the quantities f(t)g(t)∆, quantities which are interpreted as
the base ∆ of a rectangle multiplied by its height f(t)g(t), and the rect-
angle closely covers the area under the graph of the function f g over the
interval [t, t + ∆]. The term f(t)g(t)∆ can alternatively be interpreted
as the product of the value g(t) — essentially equal to any of the values
g(T ) which can be realized when T falls within the interval [t, t+∆] —
multiplied by f(t)∆. The latter quantity is, by the Fundamental Theorem
of the Calculus, approximately equal for small ∆ to the area under the
function f over the interval [t, t + ∆], and is by definition equal to the
probability with which T ∈ [t, t+∆]. In summary, E(Y ) =

∫∞
0

g(t)f(t)dt
is the average of values g(T ) obtained for lifetimes T within small intervals
[t, t+∆] weighted by the probabilities of approximately f(t)∆ with which
those T and g(T ) values are obtained. The expectation is a weighted
average because the weights f(t)∆ sum to the integral

∫∞
0

f(t)dt = 1.

The same idea and formula can be applied to the restricted population
of lives aged x. The resulting quantity is then called the conditional
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expected value of g(T ) given that T ≥ x. The formula will be different
in two ways: first, the range of integration is from x to ∞, because of
the resitriction to individuals in the life-table who have survived to exact age
x; second, the density f(t) must be replaced by f(t)/S(x), the so-called
conditional density given T ≥ x, which is found as follows. From the
definition of conditional probability, for t ≥ x,

P (t ≤ T ≤ t+∆
∣

∣

∣T ≥ x) =
P ( [t ≤ T ≤ t+∆] ∩ [T ≥ x])

P (T ≥ x)

=
P (t ≤ T ≤ t+∆)

P (T ≥ x)
=

S(t)− S(t+∆)

S(x)

Thus the density which can be used to calculate conditional probabilities

P (a ≤ T ≤ b
∣

∣

∣
T ≥ x) for x < a < b is

lim
∆→0

1

∆
P (t ≤ T ≤ t+∆

∣

∣

∣
T ≥ x) = lim

∆→0

S(t)− S(t+∆)

S(x)∆
= − S ′(t)

S(x)
=

f(t)

S(x)

The result of all of this discussion of conditional expected values is the for-
mula, with associated weighted-average interpretation:

E(g(T )
∣

∣

∣T ≥ x) =
1

S(x)

∫ ∞

x

g(t) f(t) dt (1.3)

1.2 Theory of Interest

Since payments based upon unpredictable occurrences or contingencies for in-
sured lives can occur at different times, we study next the Theory of Interest,
which is concerned with valuing streams of payments made over time. The
general model in the case of constant interest is as follows. Compounding at
time-intervals h = 1/m , with nominal interest rate i(m), means that a unit
amount accumulates to (1 + i(m)/m) after a time h = 1/m. The principal
or account value 1+i(m)/m at time 1/m accumulates over the time-interval
from 1/m until 2/m, to (1+i(m)/m)·(1+i(m)/m) = (1+i(m)/m)2. Similarly,
by induction, a unit amount accumulates to (1+ i(m)/m)n = (1+ i(m)/m)Tm

after the time T = nh which is a multiple of n whole units of h. In the
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limit of continuous compounding (i.e., m → ∞ ), the unit amount com-
pounds to eδ T after time T , where the instantaneous annualized nominal
interest rate δ = limm i(m) (also called the force of interest) will be shown
to exist. In either case of compounding, the actual Annual Percentage Rate
or APR or effective interest rate is defined as the amount (minus 1, and
multiplied by 100 if it is to be expressed as a percentage) to which a unit
compounds after a single year, i.e., respectively as

iAPR =
(

1 +
i(m)

m

)m

− 1 or eδ − 1

The amount to which a unit invested at time 0 accumulates at the effective
interest rate iAPR over a time-duration T (still assumed to be a multiple
of 1/m) is therefore

(

1 + iAPR

)T

=
(

1 +
i(m)

m

)mT

= eδ T

This amount is called the accumulation factor operating over the interval of
duration T at the fixed interest rate. Moreover, the first and third expres-
sions of the displayed equation also make perfect sense when the duration
T is any positive real number, not necessarily a multiple of 1/m.

All the nominal interest rates i(m) for different periods of compounding
are related by the formulas

(1 + i(m)/m)m = 1+ i = 1+ iAPR , i(m) = m
{

(1 + i)1/m − 1
}

(1.4)

Similarly, interest can be said to be governed by the discount rates for various
compounding periods, defined by

1 − d(m)/m = (1 + i(m)/m)−1

Solving the last equation for d(m) gives

d(m) = i(m)/(1 + i(m)/m) (1.5)

The idea of discount rates is that if $1 is loaned out at interest, then the
amount d(m)/m is the correct amount to be repaid at the beginning rather
than the end of each fraction 1/m of the year, with repayment of the
principal of $1 at the end of the year, in order to amount to the same
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effective interest rate. The reason is that, according to the definition, the
amount 1− d(m)/m accumulates at nominal interest i(m) (compounded m
times yearly) to (1−d(m)/m) · (1+ i(m)/m) = 1 after a time-period of 1/m.

The quantities i(m), d(m) are naturally introduced as the interest pay-
ments which must be made respectively at the ends and the beginnings of
successive time-periods 1/m in order that the principal owed at each time
j/m on an amount $ 1 borrowed at time 0 will always be $ 1. To
define these terms and justify this assertion, consider first the simplest case,
m = 1. If $ 1 is to be borrowed at time 0, then the single payment at
time 1 which fully compensates the lender, if that lender could alternatively
have earned interest rate i, is $ (1 + i), which we view as a payment of
$ 1 principal (the face amount of the loan) and $ i interest. In exactly the
same way, if $ 1 is borrowed at time 0 for a time-period 1/m, then the
repayment at time 1/m takes the form of $ 1 principal and $ i(m)/m
interest. Thus, if $ 1 was borrowed at time 0, an interest payment of
$ i(m)/m at time 1/m leaves an amount $ 1 still owed, which can be
viewed as an amount borrowed on the time-interval (1/m, 2/m]. Then a
payment of $ i(m)/m at time 2/m still leaves an amount $ 1 owed at
2/m, which is deemed borrowed until time 3/m, and so forth, until the loan
of $ 1 on the final time-interval ((m− 1)/m, 1] is paid off at time 1 with
a final interest payment of $ i(m)/m together with the principal repayment
of $ 1. The overall result which we have just proved intuitively is:

$ 1 at time 0 is equivalent to the stream of m payments of
$ i(m)/m at times 1/m, 2/m, . . . , 1 plus the payment of $ 1
at time 1.

Similarly, if interest is to be paid at the beginning of the period of the
loan instead of the end, the interest paid at time 0 for a loan of $ 1 would
be d = i/(1 + i), with the only other payment a repayment of principal at
time 1. To see that this is correct, note that since interest d is paid at the
same instant as receiving the loan of $ 1 , the net amount actually received
is 1 − d = (1 + i)−1, which accumulates in value to (1 − d)(1 + i) = $ 1
at time 1. Similarly, if interest payments are to be made at the beginnings
of each of the intervals (j/m, (j + 1)/m] for j = 0, 1, . . . , m − 1, with
a final principal repayment of $ 1 at time 1, then the interest payments
should be d(m)/m. This follows because the amount effectively borrowed
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(after the immediate interest payment) over each interval (j/m, (j+1)/m]
is $ (1 − d(m)/m), which accumulates in value over the interval of length
1/m to an amount (1 − d(m)/m)(1 + i(m)/m) = 1. So throughout the
year-long life of the loan, the principal owed at (or just before) each time
(j + 1)/m is exactly $ 1. The net result is

$ 1 at time 0 is equivalent to the stream of m payments
of $ d(m)/m at times 0, 1/m, 2/m, . . . , (m − 1)/m plus the
payment of $ 1 at time 1.

A useful algebraic exercise to confirm the displayed assertions is:

Exercise. Verify that the present values at time 0 of the payment streams
with m interest payments in the displayed assertions are respectively

m
∑

j=1

i(m)

m
(1+ i)−j/m +(1+ i)−1 and

m−1
∑

j=0

d(m)

m
(1+ i)−j/m +(1+ i)−1

and that both are equal to 1. These identities are valid for all i > 0.

1.2.1 Variable Interest Rates

Now we formulate the generalization of these ideas to the case of non-constant
instantaneously varying, but known or observed, nominal interest rates δ(t),
for which the old-fashioned name would be time-varying force of interest .
Here, if there is a compounding-interval [kh, (k + 1)h) of length h = 1/m,
one would first use the instantaneous continuously-compounding interest-rate
δ(kh) available at the beginning of the interval to calculate an equivalent
annualized nominal interest-rate over the interval, i.e., to find a number
rm(kh) such that

(

1 +
rm(kh)

m

)

=
(

eδ(kh)
)1/m

= exp
(δ(kh)

m

)

In the limit of large m, there is an essentially constant principal amount
over each interval of length 1/m, so that over the interval [b, b + t), with
instantaneous compounding, the unit principal amount accumulates to

lim
m→∞

eδ(b)/meδ(b+h)/m · · · eδ(b+[mt]h)/m
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= exp



lim
m

1

m

[mt]−1
∑

k=0

δ(b+ k/m)



 = exp

(∫ t

0

δ(b+ s) ds

)

The last step in this chain of equalities relates the concept of continuous
compounding to that of the Riemann integral. To specify continuous-time
varying interest rates in terms of effective or APR rates, instead of the in-
stantaneous nominal rates δ(t) , would require the simple conversion

rAPR(t) = eδ(t) − 1 , δ(t) = ln
(

1 + rAPR(t)
)

Next consider the case of deposits s0, s1, . . . , sk, . . . , sn made at times
0, h, . . . , kh, . . . , nh, where h = 1/m is the given compounding-period,
and where nominal annualized instantaneous interest-rates δ(kh) (with
compounding-period h) apply to the accrual of interest on the interval
[kh, (k + 1)h). If the accumulated bank balance just after time kh is
denoted by Bk , then how can the accumulated bank balance be expressed
in terms of sj and δ(jh) ? Clearly

Bk+1 = Bk ·
(

1 +
i(m)(kh)

m

)

+ sk+1 , B0 = s0

The preceding difference equation can be solved in terms of successive sum-
mation and product operations acting on the sequences sj and δ(jh), as
follows. First define a function Ak to denote the accumulated bank bal-
ance at time kh for a unit invested at time 0 and earning interest with
instantaneous nominal interest rates δ(jh) (or equivalently, nominal rates
rm(jh) for compounding at multiples of h = 1/m) applying respectively
over the whole compounding-intervals [jh, (j+1)h), j = 0, . . . , k−1. Then
by definition, Ak satisfies a homogeneous equation analogous to the previous
one, which together with its solution is given by

Ak+1 = Ak ·
(

1 +
rm(kh)

m

)

, A0 = 1, Ak =
k−1
∏

j=0

(

1 +
rm(jh)

m

)

The next idea is the second basic one in the theory of interest, namely the
idea of equivalent investments leading to the definition of present value of an
income stream/investment. Suppose that a stream of deposits sj accruing
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interest with annualized nominal rates rm(jh) with respect to compounding-
periods [jh, (j + 1)h) for j = 0, . . . , n is such that a single deposit D at
time 0 would accumulate by compound interest to give exactly the same
final balance Fn at time T = nh. Then the present cash amount D
in hand is said to be equivalent to the value of a contract to receive sj
at time jh, j = 0, 1, . . . , n. In other words, the present value of the
contract is precisely D. We have just calculated that an amount 1 at time
0 compounds to an accumulated amount An at time T = nh. Therefore,
an amount a at time 0 accumulates to a · An at time T , and in particular
1/An at time 0 accumulates to 1 at time T . Thus the present value of
1 at time T = nh is 1/An . Now define Gk to be the present value of the
stream of payments sj at time jh for j = 0, 1, . . . , k. Since Bk was the
accumulated value just after time kh of the same stream of payments, and
since the present value at 0 of an amount Bk at time kh is just Bk/Ak,
we conclude

Gk+1 =
Bk+1

Ak+1

=
Bk (1 + rm(kh)/m)

Ak (1 + rm(kh)/m)
+

sk+1
Ak+1

, k ≥ 1 , G0 = s0

Thus Gk+1 −Gk = sk+1/Ak+1, and

Gk+1 = s0 +
k
∑

i=0

si+1
Ai+1

=
k+1
∑

j=0

sj
Aj

In summary, we have simultaneously found the solution for the accumulated
balance Bk just after time kh and for the present value Gk at time 0 :

Gk =
k
∑

i=0

si
Ai

, Bk = Ak ·Gk , k = 0, . . . , n

The intuitive interpretation of the formulas just derived relies on the
following simple observations and reasoning:

(a) The present value at fixed interest rate i of a payment of $1
exactly t years in the future, must be equal to the amount which must be
put in the bank at time 0 to accumulate at interest to an amount 1 exactly
t years later. Since (1+ i)t is the factor by which today’s deposit increases
in exactly t years, the present value of a payment of $1 delayed t years
is (1 + i)−t. Here t may be an integer or positive real number.
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(b) Present values superpose additively: that is, if I am to receive a
payment stream C which is the sum of payment streams A and B, then the
present value of C is simply the sum of the present value of payment stream
A and the present value of payment stream B.

(c) As a consequence of (a) and (b), the present value for constant interest
rate i at time 0 of a payment stream consisting of payments sj at future
times tj, j = 0, . . . , n must be the summation

n
∑

j=0

sj (1 + i)−tj

(d) Finally, to combine present values on distinct time intervals, at pos-
sibly different interest rates, remark that if fixed interest-rate i applies to
the time-interval [0, s] and the fixed interest rate i′ applies to the time-
interval [s, t+ s], then the present value at time s of a future payment of
a at time t + s is b = a(1 + i′)−t, and the present value at time 0 of
a payment b at time s is b (1 + i)−s . The idea of present value is that
these three payments, a at time s + t, b = a(1 + i′)−t at time s, and
b(1 + i)−s = a (1 + i′)−t (1 + i)−s at time 0 , are all equivalent.

(e) Applying the idea of paragraph (d) repeatedly over successive intervals
of length h = 1/m each, we find that the present value of a payment of $1
at time t (assumed to be an integer multiple of h), where r(kh) is the
applicable effective interest rate on time-interval [kh, (k + 1)h], is

1/A(t) =
mt
∏

j=1

(1 + r(jh))−h

where A(t) = Ak is the amount previously derived as the accumulation-
factor for the time-interval [0, t].

The formulas just developed can be used to give the internal rate of return
r over the time-interval [0, T ] of a unit investment which pays amount sk
at times tk, k = 0, . . . , n, 0 ≤ tk ≤ T . This constant (effective) interest
rate r is the one such that

n
∑

k=0

sk

(

1 + r
)−tk

= 1
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With respect to the APR r , the present value of a payment sk at a
time tk time-units in the future is sk · (1 + r)−tk . Therefore the stream
of payments sk at times tk, (k = 0, 1, . . . , n) becomes equivalent, for the
uniquely defined interest rate r, to an immediate (time-0) payment of 1.

Example 1 As an illustration of the notion of effective interest rate, or in-
ternal rate of return, suppose that you are offered an investment option under
which a $ 10, 000 investment made now is expected to pay $ 300 yearly for
5 years (beginning 1 year from the date of the investment), and then $ 800
yearly for the following five years, with the principal of $ 10, 000 returned
to you (if all goes well) exactly 10 years from the date of the investment (at
the same time as the last of the $ 800 payments. If the investment goes
as planned, what is the effective interest rate you will be earning on your
investment ?

As in all calculations of effective interest rate, the present value of the
payment-stream, at the unknown interest rate r = iAPR, must be bal-
anced with the value (here $ 10, 000) which is invested. (That is because
the indicated payment stream is being regarded as equivalent to bank interest
at rate r.) The balance equation in the Example is obviously

10, 000 = 300
5
∑

j=1

(1 + r)−j + 800
10
∑

j=6

(1 + r)−j + 10, 000 (1 + r)−10

The right-hand side can be simplified somewhat, in terms of the notation
x = (1 + r)−5, to

300

1 + r

( 1− x

1− (1 + r)−1

)

+
800x

(1 + r)

( 1− x

1− (1 + r)−1

)

+ 10000x2

=
1− x

r
(300 + 800x) + 10000x2 (1.6)

Setting this simplified expression equal to the left-hand side of 10, 000 does
not lead to a closed-form solution, since both x = (1+r)−5 and r involve the
unknown r. Nevertheless, we can solve the equation roughly by ‘tabulating’
the values of the simplified right-hand side as a function of r ranging in
increments of 0.005 from 0.035 through 0.075. (We can guess that the
correct answer lies between the minimum and maximum payments expressed
as a fraction of the principal.) This tabulation yields:
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r .035 .040 .045 .050 .055 .060 .065 .070 .075
(1.6) 11485 11018 10574 10152 9749 9366 9000 8562 8320

From these values, we can see that the right-hand side is equal to $ 10, 000
for a value of r falling between 0.05 and 0.055. Interpolating linearly to
approximate the answer yields r = 0.050 + 0.005 ∗ (10000− 10152)/(9749−
10152) = 0.05189, while an accurate equation-solver (the one in the Splus
function uniroot) finds r = 0.05186.

1.2.2 Continuous-time Payment Streams

There is a completely analogous development for continuous-time deposit
streams with continuous compounding. Suppose D(t) to be the rate per
unit time at which savings deposits are made, so that if we take m to go to
∞ in the previous discussion, we have D(t) = limm→∞ ms[mt], where [·]
again denotes greatest-integer. Taking δ(t) to be the time-varying nominal
interest rate with continuous compounding, and B(t) to be the accumulated
balance as of time t (analogous to the quantity B[mt] = Bk from before,
when t = k/m), we replace the previous difference-equation by

B(t+ h) = B(t) (1 + h δ(t)) + hD(t) + o(h)

where o(h) denotes a remainder such that o(h)/h → 0 as h → 0.
Subtracting B(t) from both sides of the last equation, dividing by h, and
letting h decrease to 0, yields a differential equation at times t > 0 :

B′(t) = B(t) δ(t) +D(t) , A(0) = s0 (1.7)

The method of solution of (1.7), which is the standard one from differential
equations theory of multiplying through by an integrating factor , again has
a natural interpretation in terms of present values. The integrating factor
1/A(t) = exp(−

∫ t

0
δ(s) ds) is the present value at time 0 of a payment of

1 at time t, and the quantity B(t)/A(t) = G(t) is then the present value
of the deposit stream of s0 at time 0 followed by continuous deposits at
rate D(t). The ratio-rule of differentiation yields

G′(t) =
B′(t)

A(t)
− B(t)A′(t)

A2(t)
=

B′(t) − B(t) δ(t)

A(t)
=

D(t)

A(t)
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where the substitutuion A′(t)/A(t) ≡ δ(t) has been made in the third
expression. Since G(0) = B(0) = s0, the solution to the differential equation
(1.7) becomes

G(t) = s0 +

∫ t

0

D(s)

A(s)
ds , B(t) = A(t)G(t)

Finally, the formula can be specialized to the case of a constant unit-rate
payment stream ( D(x) = 1, δ(x) = δ = ln(1 + i), 0 ≤ x ≤ T ) with
no initial deposit (i.e., s0 = 0). By the preceding formulas, A(t) =
exp(t ln(1 + i)) = (1 + i)t, and the present value of such a payment stream
is

∫ T

0

1 · exp(−t ln(1 + i)) dt =
1

δ

(

1− (1 + i)−T
)

Recall that the force of interest δ = ln(1 + i) is the limiting value obtained
from the nominal interest rate i(m) using the difference-quotient representa-
tion:

lim
m→∞

i(m) = lim
m→∞

exp((1/m) ln(1 + i)) − 1

1/m
= ln(1 + i)

The present value of a payment at time T in the future is, as expected,

(

1 +
i(m)

m

)−mT

= (1 + i)−T = exp(−δ T )

1.3 Exercise Set 1

The first homework set covers the basic definitions in two areas: (i) prob-
ability as it relates to events defined from cohort life-tables, including the
theoretical machinery of population and conditional survival, distribution,
and density functions and the definition of expectation; (ii) the theory
of interest and present values, with special reference to the idea of income
streams of equal value at a fixed rate of interest.

(1). For how long a time should $100 be left to accumulate at 5% interest
so that it will amount to twice the accumulated value (over the same time
period) of another $100 deposited at 3% ?



1.3. EXERCISE SET 1 17

(2). Use a calculator to answer the following numerically:

(a) Suppose you sell for $6,000 the right to receive for 10 years the amount
of $1,000 per year payable quarterly (beginning at the end of the first quar-
ter). What effective rate of interest makes this a fair sale price ? (You will
have to solve numerically or graphically, or interpolate a tabulation, to find
it.)

(b) $100 deposited 20 years ago has grown at interest to $235. The
interest was compounded twice a year. What were the nominal and effective
interest rates ?

(c) How much should be set aside (the same amount each year) at the
beginning of each year for 10 years to amount to $1000 at the end of the 10th
year at the interest rate of part (b) ?

In the following problems, S(x) denotes the probability for a newborn
in a designated population to survive to exact age x . If a cohort life table
is under discussion, then the probability distribution relates to a randomly
chosen member of the newborn cohort.

(3). Assume that a population’s survival probability function is given by
S(x) = 0.1(100− x)1/2, for 0 ≤ x ≤ 100.

(a) Find the probability that a life aged 0 will die between exact ages 19
and 36.

(b) Find the probability that a life aged 36 will die before exact age 51.

(4). (a) Find the expected age at death of a member of the population in
problem (3).

(b) Find the expected age at death of a life aged 20 in the population of
problem (3).

(5). Use the Illustrative Life-table (Table 1.1) to calculate the following
probabilities. (In each case, assume that the indicated span of years runs
from birthday to birthday.) Find the probability

(a) that a life aged 26 will live at least 30 more years;

(b) that a life aged 22 will die between ages 45 and 55;

(c) that a life aged 25 will die either before age 50 or after the 70’th
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birthday.

(6). In a certain population, you are given the following facts:

(i) The probability that two independent lives, respectively aged 25 and
45, both survive 20 years is 0.7.

(ii) The probability that a life aged 25 will survive 10 years is 0.9.

Then find the probability that a life aged 35 will survive to age 65.

(7). Suppose that you borrowed $1000 at 6% APR, to be repaid in 5 years in
a lump sum, and that after holding the money idle for 1 year you invested the
money to earn 8% APR for the remaining four years. What is the effective
interest rate you have earned (ignoring interest costs) over 5 years on the
$1000 which you borrowed ? Taking interest costs into account, what is the
present value of your profit over the 5 years of the loan ? Also re-do the
problem if instead of repaying all principal and interest at the end of 5 years,
you must make a payment of accrued interest at the end of 3 years, with the
additional interest and principal due in a single lump-sum at the end of 5
years.

(8). Find the total present value at 5% APR of payments of $1 at the end
of 1, 3, 5, 7, and 9 years and payments of $2 at the end of 2, 4, 6, 8, and 10
years.

1.4 Worked Examples

Example 1. How many years does it take for money to triple in value at
interest rate i ?

The equation to solve is 3 = (1 + i)t, so the answer is ln(3)/ ln(1 + i),
with numerical answer given by

t =







22.52 for i = 0.05
16.24 for i = 0.07
11.53 for i = 0.10

Example 2. Suppose that a sum of $1000 is borrowed for 5 years at 5%,
with interest deducted immediately in a lump sum from the amount borrowed,
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and principal due in a lump sum at the end of the 5 years. Suppose further
that the amount received is invested and earns 7%. What is the value of the
net profit at the end of the 5 years ? What is its present value (at 5%) as
of time 0 ?

First, the amount received is 1000 (1 − d)5 = 1000/(1.05)5 = 783.53,
where d = .05/1.05, since the amount received should compound to precisely
the principal of $1000 at 5% interest in 5 years. Next, the compounded value
of 783.53 for 5 years at 7% is 783.53 (1.07)5 = 1098.94, so the net profit
at the end of 5 years, after paying off the principal of 1000, is $98.94.
The present value of the profit ought to be calculated with respect to the
‘going rate of interest’, which in this problem is presumably the rate of 5%
at which the money is borrowed, so is 98.94/(1.05)5 = 77.52.

Example 3. For the following small cohort life-table (first 3 columns) with 5
age-categories, find the probabilities for all values of [T ], both uncondition-
ally and conditionally for lives aged 2, and find the expectation of both [T ]
and (1.05)−[T ]−1.

The basic information in the table is the first column lx of numbers
surviving. Then dx = lx − lx+1 for x = 0, 1, . . . , 4. The random variable
T is the life-length for a randomly selected individual from the age=0 cohort,
and therefore P ([T ] = x) = P (x ≤ T < x + 1) = dx/l0. The conditional
probabilities given survivorship to age-category 2 are simply the ratios with
numerator dx for x ≥ 2 , and with denominator l2 = 65.

x lx dx P ([T ] = x) P ([T ] = x|T ≥ 2) 1.05−x−1

0 100 20 0.20 0 0.95238
1 80 15 0.15 0 0.90703
2 65 10 0.10 0.15385 0.86384
3 55 15 0.15 0.23077 0.82770
4 40 40 0.40 0.61538 0.78353
5 0 0 0 0 0.74622

In terms of the columns of this table, we evaluate from the definitions and
formula (1.2)

E([T ]) = 0 · (0.20) + 1 · (0.15) + 2 · (0.10) + 3 · (0.15) + 4 · (0.40) = 2.4
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E([T ] |T ≥ 2) = 2 · (0.15385) + 3 · (0.23077) + 4 · (0.61538) = 3.4615

E(1.05−[T ]−1) = 0.95238 · 0.20 + 0.90703 · 0.15 + 0.86384 · 0.10+
+0.8277 · 0.15 + 0.78353 · 0.40 = 0.8497

The expectation of [T ] is interpreted as the average per person in the cohort
life-table of the number of completed whole years before death. The quantity
(1.05)−[T ]−1 can be interpreted as the present value at birth of a payment
of $1 to be made at the end of the year of death, and the final expectation
calculated above is the average of that present-value over all the individuals
in the cohort life-table, if the going rate of interest is 5%.

Example 4. Suppose that the death-rates qx = dx/lx for integer ages x in
a cohort life-table follow the functional form

qx =

{

4 · 10−4 for 5 ≤ x < 30
8 · 10−4 for 30 ≤ x ≤ 55

between the ages x of 5 and 55 inclusive. Find analytical expressions for
S(x), lx, dx at these ages if l0 = 105, S(5) = .96.

The key formula expressing survival probabilities in terms of death-rates
qx is:

S(x+ 1)

S(x)
=

lx+1
lx

= 1− qx

or
lx = l0 · S(x) = (1− q0)(1− q1) · · · (1− qx−1)

So it follows that for x = 5, . . . , 30,

S(x)

S(5)
= (1− .0004)x−5 , lx = 96000 · (0.9996)x−5

so that S(30) = .940446, and for x = 31, . . . , 55,

S(x) = S(30) · (.9992)x−30 = .940446 (.9992)x−30

The death-counts dx are expressed most simply through the preceding
expressions together with the formula dx = qx lx .
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1.5 Useful Formulas from Chapter 1

S(x) =
lx
l0

, dx = lx − lx+1

p. 1

P (x ≤ T ≤ x+ k) =
S(x)− S(x+ k)

S(x)
=

lx − lx+k
lx

p. 2

f(x) = −S ′(x) , S(x)− S(x+ k) =

∫ x+t

x

f(t) dt

pp. 4, 5

E
(

g(T )
∣

∣

∣
T ≥ x

)

=
1

S(x)

∫ ∞

x

g(t) f(t) dt

p. 7

1 + iAPR =

(

1 +
i(m)

m

)m

=

(

1− d(m)

m

)−m

= eδ

p. 8
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Chapter 2

Theory of Interest and
Force of Mortality

The parallel development of Interest and Probability Theory topics continues
in this Chapter. For application in Insurance, we are preparing to value
uncertain payment streams in which times of payment may also be uncertain.
The interest theory allows us to express the present values of certain payment
streams compactly, while the probability material prepares us to find and
interpret average or expected values of present values expressed as functions
of random lifetime variables.

This installment of the course covers: (a) further formulas and topics in
the pure (i.e., non-probabilistic) theory of interest, and (b) more discussion
of lifetime random variables, in particular of force of mortality or hazard-
rates, and theoretical families of life distributions.

2.1 More on Theory of Interest

The objective of this subsection is to define notations and to find compact
formulas for present values of some standard payment streams. To this end,
newly defined payment streams are systematically expressed in terms of pre-
viously considered ones. There are two primary methods of manipulating
one payment-stream to give another for the convenient calculation of present

23
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values:

• First, if one payment-stream can be obtained from a second one pre-
cisely by delaying all payments by the same amount t of time, then
the present value of the first one is vt multiplied by the present value
of the second.

• Second, if one payment-stream can be obtained as the superposition of
two other payment streams, i.e., can be obtained by paying the total
amounts at times indicated by either of the latter two streams, then
the present value of the first stream is the sum of the present values of
the other two.

The following subsection contains several useful applications of these meth-
ods. For another simple illustration, see Worked Example 2 at the end of the
Chapter.

2.1.1 Annuities & Actuarial Notation

The general present value formulas above will now be specialized to the case
of constant (instantaneous) interest rate δ(t) ≡ ln(1 + i) = δ at all times
t ≥ 0, and some very particular streams of payments sj at times tj,
related to periodic premium and annuity payments. The effective interest
rate or APR is always denoted by i, and as before the m-times-per-year
equivalent nominal interest rate is denoted by i(m). Also, from now on the
standard and convenient notation

v ≡ 1/(1 + i) = 1 /

(

1 +
i(m)

m

)m

will be used for the present value of a payment of $1 in one year.

(i) If s0 = 0 and s1 = · · · = snm = 1/m in the discrete setting, where
m denotes the number of payments per year, and tj = j/m, then the
payment-stream is called an immediate annuity, and its present value Gn

is given the notation a
(m)
ne and is equal, by the geometric-series summation

formula, to

m−1
nm
∑

j=1

(

1 +
i(m)

m

)−j

=
1− (1 + i(m)/m)−nm

m(1 + i(m)/m− 1)
=

1

i(m)

(

1−
(

1+
i(m)

m

)−nm)
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This calculation has shown

a
(m)
ne =

1− vn

i(m)
(2.1)

All of these immediate annuity values, for fixed v, n but varying m, are
roughly comparable because all involve a total payment of 1 per year.
Formula (2.1) shows that all of the values a

(m)
ne differ only through the factors

i(m), which differ by only a few percent for varying m and fixed i, as shown
in Table 2.1. Recall from formula (1.4) that i(m) = m{(1 + i)1/m − 1}.

If instead s0 = 1/m but snm = 0, then the notation changes to ä
(m)
ne ,

the payment-stream is called an annuity-due, and the value is given by any
of the equivalent formulas

ä
(m)
ne = (1 +

i(m)

m
) a
(m)
ne =

1− vn

m
+ a

(m)
ne =

1

m
+ a

(m)

n−1/me
(2.2)

The first of these formulas recognizes the annuity-due payment-stream as
identical to the annuity-immediate payment-stream shifted earlier by the
time 1/m and therefore worth more by the accumulation-factor (1+i)1/m =
1+ i(m)/m. The third expression in (2.2) represents the annuity-due stream
as being equal to the annuity-immediate stream with the payment of 1/m
at t = 0 added and the payment of 1/m at t = n removed. The final
expression says that if the time-0 payment is removed from the annuity-due,
the remaining stream coincides with the annuity-immediate stream consisting
of nm− 1 (instead of nm) payments of 1/m.

In the limit as m → ∞ for fixed n, the notation ane denotes the
present value of an annuity paid instantaneously at constant unit rate, with
the limiting nominal interest-rate which was shown at the end of the previous
chapter to be limm i(m) = i(∞) = δ. The limiting behavior of the nominal
interest rate can be seen rapidly from the formula

i(m) = m
(

(1 + i)1/m − 1
)

= δ · exp(δ/m)− 1

δ/m

since (ez − 1)/z converges to 1 as z → 0. Then by (2.1) and (2.2),

ane = lim
m→∞

ä
(m)
ne = lim

m→∞
a
(m)
ne =

1− vn

δ
(2.3)
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Table 2.1: Values of nominal interest rates i(m) (upper number) and
d(m) (lower number), for various choices of effective annual interest rate
i and number m of compounding periods per year.

i = .02 .03 .05 .07 .10 .15

m = 2 .0199 .0298 .0494 .0688 .0976 .145

.0197 .0293 .0482 .0665 .0931 .135

3 .0199 .0297 .0492 .0684 .0968 .143

.0197 .0294 .0484 .0669 .0938 .137

4 .0199 .0297 .0491 .0682 .0965 .142

.0198 .0294 .0485 .0671 .0942 .137

6 .0198 .0296 .0490 .0680 .0961 .141

.0198 .0295 .0486 .0673 .0946 .138

12 .0198 .0296 .0489 .0678 .0957 .141

.0198 .0295 .0487 .0675 .0949 .139

A handy formula for annuity-due present values follows easily by recalling
that

1 − d(m)

m
=
(

1 +
i(m)

m

)−1
implies d(m) =

i(m)

1 + i(m)/m

Then, by (2.2) and (2.1),

ä
(m)
ne = (1− vn) · 1 + i(m)/m

i(m)
=

1− vn

d(m)
(2.4)

In case m is 1, the superscript (m) is omitted from all of the annuity
notations. In the limit where n → ∞, the notations become a

(m)
∞e and

ä
(m)
∞e , and the annuities are called perpetuities (respectively immediate and

due) with present-value formulas obtained from (2.1) and (2.4) as:

a
(m)
∞e =

1

i(m)
, ä

(m)
∞e =

1

d(m)
(2.5)

Let us now build some more general annuity-related present values out of
the standard functions a

(m)
ne and ä

(m)
ne .
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(ii). Consider first the case of the increasing perpetual annuity-due,

denoted (I(m)ä)
(m)
∞e , which is defined as the present value of a stream of

payments (k+ 1)/m2 at times k/m, for k = 0, 1, . . . forever. Clearly the
present value is

(I(m)ä)
(m)
∞e =

∞
∑

k=0

m−2 (k + 1)
(

1 +
i(m)

m

)−k

Here are two methods to sum this series, the first purely mathematical, the
second with actuarial intuition. First, without worrying about the strict
justification for differentiating an infinite series term-by-term,

∞
∑

k=0

(k + 1)xk =
d

dx

∞
∑

k=0

xk+1 =
d

dx

x

1− x
= (1− x)−2

for 0 < x < 1, where the geometric-series formula has been used to sum
the second expression. Therefore, with x = (1 + i(m)/m)−1 and 1 − x =
(i(m)/m)/(1 + i(m)/m),

(I(m)ä)
(m)
∞e = m−2

( i(m)/m

1 + i(m)/m

)−2
=

(

1

d(m)

)2

=
(

ä
(m)
∞e

)2

and (2.5) has been used in the last step. Another way to reach the same result
is to recognize the increasing perpetual annuity-due as 1/m multiplied by

the superposition of perpetuities-due ä
(m)
∞e paid at times 0, 1/m, 2/m, . . . ,

and therefore its present value must be ä
(m)
∞e · ä(m)∞e . As an aid in recognizing

this equivalence, consider each annuity-due ä
(m)
∞e paid at a time j/m as

being equivalent to a stream of payments 1/m at time j/m, 1/m at
(j + 1)/m, etc. Putting together all of these payment streams gives a total
of (k+1)/m paid at time k/m, of which 1/m comes from the annuity-due
starting at time 0, 1/m from the annuity-due starting at time 1/m, up
to the payment of 1/m from the annuity-due starting at time k/m.

(iii). The increasing perpetual annuity-immediate (I (m)a)
(m)
∞e —

the same payment stream as in the increasing annuity-due, but deferred by
a time 1/m — is related to the perpetual annuity-due in the obvious way

(I(m)a)
(m)
∞e = v1/m (I(m)ä)

(m)
∞e = (I(m)ä)

(m)
∞e

/

(1 + i(m)/m) =
1

i(m) d(m)
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(iv). Now consider the increasing annuity-due of finite duration

n years. This is the present value (I (m)ä)
(m)
ne of the payment-stream of

(k + 1)/m2 at time k/m, for k = 0, . . . , nm− 1. Evidently, this payment-

stream is equivalent to (I (m)ä)
(m)
∞e minus the sum of n multiplied by an

annuity-due ä
(m)
∞e starting at time n together with an increasing annuity-

due (I(m)ä)
(m)
∞e starting at time n. (To see this clearly, equate the payments

0 = (k + 1)/m2 − n · 1
m
− (k − nm + 1)/m2 received at times k/m for

k ≥ nm.) Thus

(I(m)ä)
(m)
ne = (I(m)ä)

(m)
∞e

(

1− (1 + i(m)/m)−nm
)

− nä
(m)
∞e (1 + i(m)/m)−nm

= ä
(m)
∞e

(

ä
(m)
∞e − (1 + i(m)/m)−nm

[

ä
(m)
∞e + n

] )

= ä
(m)
∞e

(

ä
(m)
ne − n vn

)

where in the last line recall that v = (1 + i)−1 = (1 + i(m)/m)−m and

that ä
(m)
ne = ä

(m)
∞e (1 − vn). The latter identity is easy to justify either

by the formulas (2.4) and (2.5) or by regarding the annuity-due payment
stream as a superposition of the payment-stream up to time n− 1/m and
the payment-stream starting at time n. As an exercise, fill in details of a
second, intuitive verification, analogous to the second verification in pargraph
(ii) above.

(v). The decreasing annuity (D(m) ä)
(m)
ne is defined as (the present

value of) a stream of payments starting with n/m at time 0 and decreasing
by 1/m2 every time-period of 1/m, with no further payments at or after
time n. The easiest way to obtain the present value is through the identity

(I(m)ä)
(m)
ne + (D(m)ä)

(m)
ne = (n+

1

m
) ä
(m)
ne

Again, as usual, the method of proving this is to observe that in the payment-
stream whose present value is given on the left-hand side, the payment
amount at each of the times j/m, for j = 0, 1, . . . , nm− 1, is

j + 1

m2
+ (

n

m
− j

m2
) =

1

m
(n +

1

m
)
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2.1.2 Loan Amortization & Mortgage Refinancing

The only remaining theory-of-interest topic to cover in this unit is the break-
down between principal and interest payments in repaying a loan such as a
mortgage. Recall that the present value of a payment stream of amount c
per year, with c/m paid at times 1/m, 2/m, . . . , n− 1/m, n/m, is c a

(m)
ne .

Thus, if an amount Loan-Amt has been borrowed for a term of n years,
to be repaid by equal installments at the end of every period 1/m , at fixed
nominal interest rate i(m), then the installment amount is

Mortgage Payment =
Loan-Amt

m a
(m)
ne

= Loan-Amt
i(m)

m (1− vn)

where v = 1/(1+ i) = (1+ i(m)/m)−m. Of the payment made at time (k+
1)/m, how much can be attributed to interest and how much to principal ?
Consider the present value at 0 of the debt per unit of Loan-Amt less
accumulated amounts paid up to and including time k/m :

1−m a
(m)

k/me

1

m a
(m)
ne

= 1− 1− vk/m

1− vn
=

vk/m − vn

1− vn

The remaining debt, per unit of Loan-Amt, valued just after time k/m,
is denoted from now on by Bn, k/m. It is greater than the displayed present
value at 0 by a factor (1 + i)k/m, so is equal to

Bn, k/m = (1 + i)k/m
vk/m − vn

1− vn
=

1− vn−k/m

1− vn
(2.6)

The amount of interest for a Loan Amount of 1 after time 1/m is (1 +
i)1/m − 1 = i(m)/m. Therefore the interest included in the payment at
(k + 1)/m is i(m)/m multiplied by the value Bn, k/m of outstanding debt
just after k/m. Thus the next total payment of i(m)/(m(1− vn)) consists
of the two parts

Amount of interest = m−1 i(m) (1− vn−k/m)/(1− vn)

Amount of principal = m−1i(m)vn−k/m/(1− vn)

By definition, the principal included in each payment is the amount of the
payment minus the interest included in it. These formulas show in particular
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that the amount of principal repaid in each successive payment increases
geometrically in the payment number, which at first seems surprising. Note
as a check on the displayed formulas that the outstanding balance Bn,(k+1)/m

immediately after time (k + 1)/m is re-computed as Bn, k/m minus the
interest paid at (k + 1)/m, or

1− vn−k/m

1− vn
− i(m)

m

vn−k/m

1− vn
=

1− vn−k/m(1 + i(m)/m)

1− vn

=
1− vn−(k+1)/m

1− vn
=

(

1−
a
(m)

(k+1)/me

a
(m)
ne

)

v−(k+1)/m (2.7)

as was derived above by considering the accumulated value of amounts paid.
The general definition of the principal repaid in each payment is the excess
of the payment over the interest since the past payment on the total balance
due immediately following that previous payment.

2.1.3 Illustration on Mortgage Refinancing

Suppose that a 30–year, nominal-rate 8%, $100, 000 mortgage payable
monthly is to be refinanced at the end of 8 years for an additional 15 years
(instead of the 22 which would otherwise have been remaining to pay it
off) at 6%, with a refinancing closing-cost amount of $1500 and 2 points.
(The points are each 1% of the refinanced balance including closing costs,
and costs plus points are then extra amounts added to the initial balance
of the refinanced mortgage.) Suppose that the new pattern of payments is
to be valued at each of the nominal interest rates 6%, 7%, or 8%, due
to uncertainty about what the interest rate will be in the future, and that
these valuations will be taken into account in deciding whether to take out
the new loan.

The monthly payment amount of the initial loan in this example was
$100, 000(.08/12)/(1− (1+ .08/12)−360) = $733.76, and the present value as
of time 0 (the beginning of the old loan) of the payments made through the

end of the 8th year is ($733.76) · (12a(12)
8e

) = $51, 904.69. Thus the present
value, as of the end of 8 years, of the payments still to be made under the
old mortgage, is $(100, 000− 51, 904.69)(1 + .08/12)96 = $91, 018.31. Thus,
if the loan were to be refinanced, the new refinanced loan amount would be
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$91, 018.31 + 1, 500.00 = $92, 518.31. If 2 points must be paid in order to
lock in the rate of 6% for the refinanced 15-year loan, then this amount
is (.02)92518.31 = $1850.37 . The new principal balance of the refinanced
loan is 92518.31 + 1850.37 = $94, 368.68, and this is the present value at a
nominal rate of 6% of the future loan payments, no matter what the term of
the refinanced loan is. The new monthly payment (for a 15-year duration) of
the refinanced loan is $94, 368.68(.06/12)/(1− (1 + .06/12)−180) = $796.34.

For purposes of comparison, what is the present value at the current
going rate of 6% (nominal) of the continuing stream of payments under
the old loan ? That is a 22-year stream of monthly payments of $733.76,
as calculated above, so the present value at 6% is $733.76 · (12a(12)

22e
) =

$107, 420.21. Thus, if the new rate of 6% were really to be the correct
one for the next 22 years, and each loan would be paid to the end of its
term, then it would be a financial disaster not to refinance. Next, suppose
instead that right after re-financing, the economic rate of interest would be
a nominal 7% for the next 22 years. In that case both streams of payments
would have to be re-valued — the one before refinancing, continuing another
22 years into the future, and the one after refinancing, continuing 15 years

into the future. The respective present values (as of the end of the 8th

year) at nominal rate of 7% of these two streams are:

Old loan: 733.76 (12a
(12)
22e

) = $98, 700.06

New loan: 796.34 (12a
(12)
15e

) = $88, 597.57

Even with these different assumptions, and despite closing-costs and points,
it is well worth re-financing.

Exercise: Suppose that you can forecast that you will in fact sell your
house in precisely 5 more years after the time when you are re-financing. At
the time of sale, you would pay off the cash principal balance, whatever it
is. Calculate and compare the present values (at each of 6%, 7%, and 8%
nominal interest rates) of your payment streams to the bank, (a) if you
continue the old loan without refinancing, and (b) if you re-finance to get
a 15-year 6% loan including closing costs and points, as described above.
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2.1.4 Computational illustration in Splus

All of the calculations described above are very easy to program, in any lan-
guage from Pascal to Mathematica, and also on a programmable calculator;
but they are also very handily organized within a spreadsheet, which seems
to be the way that MBA’s, bank-officials, and actuaries will learn to do them
from now on.

In this section, an Splus function (cf. Venables & Ripley 1998) is provided
to do some comparative refinancing calculations. Concerning the syntax of
Splus, the only explanation necessary at this point is that the symbol <−
denotes assignment of an expression to a variable: A <−B means that the
variable A is assigned the value of expression B. Other syntactic elements
used here are common to many other computer languages: * denotes mul-
tiplication, and ∧ denotes exponentiation.

The function RefExmp given below calculates mortgage payments, bal-
ances for purposes of refinancing both before and after application of ad-
ministrative costs and points, and the present value under any interest rate
(not necessarily the ones at which either the original or refinanced loans are
taken out) of the stream of repayments to the bank up to and including the
lump-sum payoff which would be made, for example, at the time of selling
the house on which the mortgage loan was negotiated. The output of the
function is a list which, in each numerical example below, is displayed in
‘unlisted’ form, horizontally as a vector. Lines beginning with the symbol #
are comment-lines.

The outputs of the function are as follows. Oldpayment is the monthly
payment on the original loan of face-amount Loan at nominal interest i(12) =
OldInt for a term of OldTerm years. NewBal is the balance Bn, k/m of
formula (2.6) for n = OldTerm, m = 12, and k/m = RefTim, and the
refinanced loan amount is a multiple 1+ Points of NewBal, which is equal
to RefBal + Costs. The new loan, at nominal interest rate NewInt, has
monthly payments Newpaymt for a term of NewTerm years. The loan is to
be paid off PayoffTim years after RefTim when the new loan commences,
and the final output of the function is the present value at the start of the
refinanced loan with nominal interest rate ValInt of the stream of payments
made under the refinanced loan up to and including the lump sum payoff.
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Splus FUNCTION CALCULATING REFINANCE PAYMENTS & VALUES

RefExmp

function(Loan, OldTerm, RefTim, NewTerm, Costs, Points,

PayoffTim, OldInt, NewInt, ValInt)

{

# Function calculates present value of future payment stream

# underrefinanced loan.

# Loan = original loan amount;

# OldTerm = term of initial loan in years;

# RefTim = time in years after which to refinance;

# NewTerm = term of refinanced loan;

# Costs = fixed closing costs for refinancing;

# Points = fraction of new balance as additional costs;

# PayoffTim (no bigger than NewTerm) = time (from refinancing-

# time at which new loan balance is to be paid off in

# cash (eg at house sale);

# The three interest rates OldInt, NewInt, ValInt are

# nominal 12-times-per-year, and monthly payments

# are calculated.

vold <- (1 + OldInt/12)^(-12)

Oldpaymt <- ((Loan * OldInt)/12)/(1 - vold^OldTerm)

NewBal <- (Loan * (1 - vold^(OldTerm - RefTim)))/

(1 - vold^OldTerm)

RefBal <- (NewBal + Costs) * (1 + Points)

vnew <- (1 + NewInt/12)^(-12)

Newpaymt <- ((RefBal * NewInt)/12)/(1 - vnew^NewTerm)

vval <- (1 + ValInt/12)^(-12)

Value <- (Newpaymt * 12 * (1 - vval^PayoffTim))/ValInt +

(RefBal * vval^PayoffTim * (1 - vnew^(NewTerm -

PayoffTim)))/(1 - vnew^NewTerm)

list(Oldpaymt = Oldpaymt, NewBal = NewBal,

RefBal = RefBal, Newpaymt = Newpaymt, Value = Value)

}
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We begin our illustration by reproducing the quantities calculated in the
previous subsection:

> unlist(RefExmp(100000, 30, 8, 15, 1500, 0.02, 15,

0.08, 0.06, 0.06))

Oldpaymt NewBal RefBal Newpaymt Value

733.76 91018 94368 796.33 94368

Note that, since the payments under the new (refinanced) loan are here
valued at the same interest rate as the loan itself, the present value Value of
all payments made under the loan must be equal to the the refinanced loan
amount RefBal.

The comparisons of the previous Section between the original and refi-
nanced loans, at (nominal) interest rates of 6, 7, and 8 %, are all recapitulated
easily using this function. To use it, for example, in valuing the old loan at
7%, the arguments must reflect a ‘refinance’ with no costs or points for a
period of 22 years at nominal rate 6%, as follows:

> unlist(RefExmp(100000,30,8,22,0,0,22,0.08,0.08,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

733.76 91018 91018 733.76 98701

(The small discrepancies between the values found here and in the previous
subsection are due to the rounding used there to express payment amounts
to the nearest cent.)

We consider next a numerical example showing break-even point for refi-
nancing by balancing costs versus time needed to amortize them.

Suppose that you have a 30-year mortage for $100,000 at nominal 9% ( =
i(12)), with level monthly payments, and that after 7 years of payments you
refinance to obtain a new 30-year mortgage at 7% nominal interest ( = i(m)

for m = 12), with closing costs of $1500 and 4 points (i.e., 4% of the total
refinanced amount including closing costs added to the initial balance), also
with level monthly payments. Figuring present values using the new interest
rate of 7%, what is the time K (to the nearest month) such that if both
loans — the old and the new — were to be paid off in exactly K years after
the time (the 7-year mark for the first loan) when you would have refinanced,
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then the remaining payment-streams for both loans from the time when you
refinance are equivalent (i.e., have the same present value from that time) ?

We first calculate the present value of payments under the new loan.
As remarked above in the previous example, since the same interest rate is
being used to value the payments as is used in figuring the refinanced loan,
the valuation of the new loan does not depend upon the time K to payoff.
(It is figured here as though the payoff time K were 10 years.)

> unlist(RefExmp(1.e5, 30,7,30, 1500,.04, 10, 0.09,0.07,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

804.62 93640 98946 658.29 98946

Next we compute the value of payments under the old loan, at 7% nominal
rate, also at payoff time K = 10. For comparison, the value under the
old loan for payoff time 0 (i.e., for cash payoff at the time when refinancing
would have occurred) coincides with the New Balance amount of $93640.

> unlist(RefExmp(1.e5, 30,7,23, 0,0, 10, 0.09,0.09,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

804.62 93640 93640 804.62 106042

The values found in the same way when the payoff time K is successively
replaced by 4, 3, 3.167, 3.25 are 99979, 98946, 98593, 98951. Thus, the
payoff-time K at which there is essentially no difference in present value
at nominal 7% between the old loan or the refinanced loan with costs and
points (which was found to have Value 98946), is 3 years and 3 months
after refinancing.

2.1.5 Coupon & Zero-coupon Bonds

In finance, an investor assessing the present value of a bond is in the same
situation as the bank receiving periodic level payments in repayment of a
loan. If the payments are made every 1/m year, with nominal coupon
interest rate i(m), for a bond with face value $1000, then the payments
are precisely the interest on $1000 for 1/m year, or 1000 · i(m)/m.
For most corporate or government bonds, m = 4, although some bonds
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have m = 2. If the bond is uncallable, which is assumed throughout this
discussion, then it entitles the holder to receive the stream of such payments
every 1/m year until a fixed final redemption date, at which the final interest
payment coincides with the repayment of the principal of $1000. Suppose
that the time remaining on a bond until redemption is R (assumed to be
a whole-number multiple of 1/m years), and that the nominal annualized
m-period-per-year interest rate, taking into account the credit-worthiness of
the bond issuer together with current economic conditions, is r(m) which
will typically not be equal to i(m). Then the current price P of the bond
is

P = 1000 i(m) a
(m)
Re , r(m)

+ 1000 (1 +
r(m)

m
)−Rm

In this equation, the value P represents cash on hand. The first term on
the right-hand side is the present value at nominal interest rate r(m) of the
payments of i(m) 1000/m every 1/m year, which amount to 1000i(m)

every year for R years. The final repayment of principal in R years
contributes the second term on the right-hand side to the present value. As
an application of this formula, it is easy to check that a 10-year $1000 bond
with nominal annualized quarterly interest rate i(4) = 0.06 would be priced
at $863.22 if the going nominal rate of interest were r(4) = 0.08.

A slightly different valuation problem is presented by the zero-coupon
bond, a financial instrument which pays all principal and interest, at a de-
clared interest rate i = iAPR, at the end of a term of n years, but pays
nothing before that time. When first issued, a zero-coupon bond yielding
iAPR which will pay $1000 at the end of n years is priced at its present
value

Πn = 1000 · (1 + i)−n (2.8)

(Transaction costs are generally figured into the price before calculating the
yield i.) At a time, n−R years later, when the zero-coupon bond has R
years left to run and the appropriate interest rate for valuation has changed
to r = rAPR, the correct price of the bond is the present value of a payment
of 1000 R years in the future, or 1000(1 + r)−R.

For tax purposes, at least in the US, an investor is required (either by the
federal or state government, depending on the issuer of the bond) to declare
the amount of interest income received or deemed to have been received from
the bond in a specific calendar year. For an ordinary or coupon bond, the
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year’s income is just the total i(m) · 1000 actually received during the year.
For a zero-coupon bond assumed to have been acquired when first issued,
at price Πn, if the interest rate has remained constant at i = iAPR since
the time of acquisition, then the interest income deemed to be received in
the year, also called the Original Issue Discount (OID), would simply be
the year’s interest Πn i(m) on the initial effective face amount Πn of the
bond. That is because all accumulated value of the bond would be attributed
to OID interest income received year by year, with the principal remaining
the same at Πn. Assume next that the actual year-by-year APR interest
rate is r(j) throughout the year [j, j + 1), for j = 0, 1, . . . n − 1, with
r(0) equal to i. Then, again because accumulated value over the initial
price is deemed to have been received in the form of yearly interest, the OID
should be Πn r(j) in the year [j, j + 1). The problematic aspect of this
calculation is that, when interest rates have fluctuated a lot over the times
j = 0, 1, . . . , n − R − 1, the zero-coupon bond investor will be deemed to
have received income Πn r(j) in successive years j = 0, 1, . . . , n − R − 1,
corresponding to a total accumulated value of

Πn (1 + r(0)) (1 + r(1)) · · · (1 + r(n−R− 1))

while the price 1000 (1 + r(n − R))−R for which the bond could be sold
may be very different. The discrepancy between the ‘deemed received’ accu-
mulated value and the final actual value when the bond is redeemed or sold
must presumably be treated as a capital gain or loss. However, the present
author makes no claim to have presented this topic according to the views
of the Internal Revenue Service, since he has never been able to figure out
authoritatively what those views are.

2.2 Force of Mortality & Analytical Models

Up to now, the function S(x) called the “survivor” or “survival” function
has been defined to be equal to the life-table ratio lx/l0 at all integer ages
x, and to be piecewise continuously differentiable for all positive real values
of x. Intuitively, for all positive real x and t, S(x) − S(x + t) is the
fraction of the initial life-table cohort which dies between ages x and x+ t,
and (S(x)− S(x+ t))/S(x) represents the fraction of those alive at age x
who fail before x+ t. An equivalent representation is S(x) =

∫∞
x

f(t) dt ,
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where f(t) ≡ −S ′(t) is called the failure density. If T denotes the random
variable which is the age at death for a newly born individual governed by
the same causes of failure as the life-table cohort, then P (T ≥ x) = S(x),
and according to the Fundamental Theorem of Calculus,

lim
ε→0+

P (x ≤ T ≤ x+ ε)

ε
= lim

ε→0+

∫ x+ε

x

f(u) du = f(x)

as long as the failure density is a continuous function.

Two further useful actuarial notations, often used to specify the theoret-
ical lifetime distribution, are:

tpx = P (T ≥ x+ t |T ≥ x ) = S(x+ t)/S(x)

and

tqx = 1− tpx = P (T ≤ x+ t |T ≥ x ) = (S(x)− S(x+ t))/S(x)

The quantity tqx is referred to as the age-specific death rate for periods
of length t. In the most usual case where t = 1 and x is an integer
age, the notation 1qx is replaced by qx, and 1px is replaced by px. The
rate qx would be estimated from the cohort life table as the ratio dx/lx of
those who die between ages x and x+1 as a fraction of those who reached
age x. The way in which this quantity varies with x is one of the most
important topics of study in actuarial science. For example, one important
way in which numerical analysis enters actuarial science is that one wishes
to interpolate the values qx smoothly as a function of x. The topic called
“Graduation Theory” among actuaries is the mathematical methodology of
Interpolation and Spline-smoothing applied to the raw function qx = dx/lx.

To give some idea what a realistic set of death-rates looks like, Figure 2.1
pictures the age-specific 1-year death-rates qx for the simulated life-table
given as Table 1.1 on page 3. Additional granularity in the death-rates can
be seen in Figure 2.2, where the logarithms of death-rates are plotted. After
a very high death-rate during the first year of life (26.3 deaths per thousand
live births), there is a rough year-by-year decline in death-rates from 1.45
per thousand in the second year to 0.34 per thousand in the eleventh year.
(But there were small increases in rate from ages 4 to 7 and from 8 to
9, which are likely due to statistical irregularity rather than real increases
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in risk.) Between ages 11 and 40, there is an erratic but roughly linear
increase of death-rates per thousand from 0.4 to 3.0. However, at ages
beyond 40 there is a rapid increase in death-rates as a function of age.
As can be seen from Figure 2.2, the values qx seem to increase roughly
as a power cx where c ∈ [1.08, 1.10]. (Compare this behavior with the
Gompertz-Makeham Example (v) below.) This exponential behavior of the
age-specific death-rate for large ages suggests that the death-rates pictured
could reasonably be extrapolated to older ages using the formula

qx ≈ q78 · (1.0885)x−78 , x ≥ 79 (2.9)

where the number 1.0885 was found as log(q78/q39)/(78− 39).

Now consider the behavior of εqx as ε gets small. It is clear that εqx
must also get small, roughly proportionately to ε, since the probability of
dying between ages x and x + ε is approximately ε f(x) when ε gets
small.

Definition: The limiting death-rate εqx/ε per unit time as ε ↘ 0 is
called by actuaries the force of mortality µ(x). In reliability theory or
biostatistics, the same function is called the failure intensity, failure rate, or
hazard intensity.

The reasoning above shows that for small ε,

εqx
ε

=
1

εS(x)

∫ x+ε

x

f(u) du −→ f(x)

S(x)
, ε↘ 0

Thus

µ(x) =
f(x)

S(x)
=
−S ′(x)

S(x)
= − d

dx
ln(S(x))

where the chain rule for differentiation was used in the last step. Replacing
x by y and integrating both sides of the last equation between 0 and x,
we find

∫ x

0

µ(y) dy =
(

− ln(S(y))
)x

0
= − ln(S(x))

since S(0) = 1. Similarly,

∫ x+t

x

µ(y) dy = lnS(x)− lnS(x+ t)
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Figure 2.1: Plot of age-specific death-rates qx versus x, for the simulated
illustrative life table given in Table 1.1, page 3.
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Figure 2.2: Plot of logarithm log(qx) of age-specific death-rates as a function
of age x, for the simulated illustrative life table given in Table 1.1, page 3.
The rates whose logarithms are plotted here are the same ones shown in
Figure 2.1.
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Now exponentiate to obtain the useful formulas

S(x) = exp
{

−
∫ x

0

µ(y) dy
}

, tpx =
S(x+ t)

S(x)
= exp

{

−
∫ x+t

x

µ(y) dy
}

Examples:

(i) If S(x) = (ω−x)/ω for 0 ≤ x ≤ ω (the uniform failure distribution
on [0, ω] ), then µ(x) = (ω−x)−1. Note that this hazard function increases
to ∞ as x increases to ω.

(ii) If S(x) = e−µx for x ≥ 0 (the exponential failure distribution on
[0,∞) ), then µ(x) = µ is constant.

(iii) If S(x) = exp(−λxγ) for x ≥ 0, then mortality follows the Weibull
life distribution model with shape parameter γ > 0 and scale parameter λ.
The force of mortality takes the form

µ(x) = λ γ xγ−1

This model is very popular in engineering reliability. It has the flexibility
that by choice of the shape parameter γ one can have

(a) failure rate increasing as a function of x ( γ > 1 ),

(b) constant failure rate ( γ = 1, the exponential model again),
or

(c) decreasing failure rate ( 0 < γ < 1 ).

But what one cannot have, in the examples considered so far, is a force-of-
mortality function which decreases on part of the time-axis and increases
elsewhere.

(iv) Two other models for positive random variables which are popular
in various statistical applications are the Gamma, with

S(x) =

∫ ∞

x

βα yα−1 e−βy dy /

∫ ∞

0

zα−1 e−z dz , α, β > 0

and the Lognormal, with

S(x) = 1− Φ
( lnx−m

σ

)

, m real, σ > 0
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where

Φ(z) ≡ 1

2
+

∫ z

0

e−u
2/2 du√

2π

is called the standard normal distribution function. In the Gamma case,
the expected lifetime is α/β, while in the Lognormal, the expectation is
exp(µ + σ2/2). Neither of these last two examples has a convenient or
interpretable force-of-mortality function.

Increasing force of mortality intuitively corresponds to aging, where the
causes of death operate with greater intensity or effect at greater ages. Con-
stant force of mortality, which is easily seen from the formula S(x) =
exp(−

∫ x

0
µ(y) dy) to be equivalent to exponential failure distribution, would

occur if mortality arose only from pure accidents unrelated to age. Decreas-
ing force of mortality, which really does occur in certain situations, reflects
what engineers call “burn-in”, where after a period of initial failures due to
loose connections and factory defects the nondefective devices emerge and
exhibit high reliability for a while. The decreasing force of mortality reflects
the fact that the devices known to have functioned properly for a short while
are known to be correctly assembled and are therefore highly likely to have a
standard length of operating lifetime. In human life tables, infant mortality
corresponds to burn-in: risks of death for babies decrease markedly after the
one-year period within which the most severe congenital defects and diseases
of infancy manifest themselves. Of course, human life tables also exhibit an
aging effect at high ages, since the high-mortality diseases like heart disease
and cancer strike with greatest effect at higher ages. Between infancy and
late middle age, at least in western countries, hazard rates are relatively flat.
This pattern of initial decrease, flat middle, and final increase of the force-
of-mortality, seen clearly in Figure 2.1, is called a bathtub shape and requires
new survival models.

As shown above, the failure models in common statistical and reliability
usage either have increasing force of mortality functions or decreasing force of
mortality, but not both. Actuaries have developed an analytical model which
is somewhat more realistic than the preceding examples for human mortalty
at ages beyond childhood. While the standard form of this model does not
accommodate a bathtub shape for death-rates, a simple modification of it
does.
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Example (v). (Gompertz-Makeham forms of the force of mortality). Sup-
pose that µ(x) is defined directly to have the form A + B cx. (The Bcx

term was proposed by Gompertz, the additive constant A by Makeham.
Thus the Gompertz force-of-mortality model is the special case with A = 0,
or µ(x) = Bcx.) By choice of the parameter c as being respectively
greater than or less than 1, one can arrange that the force-of-mortality
curve either be increasing or decreasing. Roughly realistic values of c for
human mortality will be only slightly greater than 1: if the Gompertz
(non-constant) term in force-of-mortality were for example to quintuple in
20 years, then c ≈ 51/20 = 1.084, which may be a reasonable value except
for very advanced ages. (Compare the comments made in connection with
Figures 2.1 and 2.2: for middle and higher ages in the simulated illustrative
life table of Table 1.1, which corresponds roughly to US male mortality of
around 1960, the figure of c was found to be roughly 1.09.) Note that in
any case the Gompertz-Makeham force of mortality is strictly convex (i.e.,
has strictly positive second derivative) when B > 0 and c 6= 1. The
Gompertz-Makeham family could be enriched still further, with further ben-
efits of realism, by adding a linear term Dx. If D < −B ln(c), with
0 < A < B, c > 1, then it is easy to check that

µ(x) = A + B cx + Dx

has a bathtub shape, initially decreasing and later increasing.

Figures 2.3 and 2.4 display the shapes of force-of-mortality functions (iii)-
(v) for various parameter combinations chosen in such a way that the ex-
pected lifetime is 75 years. This restriction has the effect of reducing the
number of free parameters in each family of examples by 1. One can
see from these pictures that the Gamma and Weibull families contain many
very similar shapes for force-of-mortality curves, but that the lognormal and
Makeham families are quite different.

Figure 2.5 shows survival curves from several analytical models plotted on
the same axes as the 1959 US male life-table data from which Table 1.1 was
simulated. The previous discussion about bathtub-shaped force of mortality
functions should have made it clear that none of the analytical models pre-
sented could give a good fit at all ages, but the Figure indicates the rather
good fit which can be achieved to realistic life-table data at ages 40 and
above. The models fitted all assumed that S(40) = 0.925 and that for lives
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aged 40, T − 40 followed the indicated analytical form. Parameters for all
models were determined from the requirements of median age 72 at death
(equal by definition to the value tm for which S(tm) = 0.5) and probability
0.04 of surviving to age 90. Thus, all four plotted survival curves have been
designed to pass through the three points (40, 0.925), (72, 0.5), (90, 0.04).
Of the four fitted curves, clearly the Gompertz agrees most closely with the
plotted points for 1959 US male mortality. The Gompertz curve has param-
eters B = 0.00346, c = 1.0918, the latter of which is close to the value
1.0885 used in formula (2.9) to extrapolate the 1959 life-table death-rates
to older ages.

2.2.1 Comparison of Forces of Mortality

What does it mean to say that one lifetime, with associated survival function
S1(t), has hazard (i.e. force of mortality) µ1(t) which is a constant multiple
κ at all ages of the force of mortality µ2(t) for a second lifetime with
survival function S2(t) ? It means that the cumulative hazard functions are
proportional, i.e.,

− lnS1(t) =

∫ t

0

µ1(x)dx =

∫ t

0

κµ2(x)dx = κ(− lnS2(t))

and therefore that

S1(t) = (S2(t))
κ , all t ≥ 0

This remark is of especial interest in biostatistics and epidemiology when
the factor κ is allowed to depend (e.g., by a regression model ln(κ) = β ·Z )
on other measured variables (covariates) Z. This model is called the (Cox)
Proportional-Hazards model and is treated at length in books on survival data
analysis (Cox and Oakes 1984, Kalbfleisch and Prentice 1980) or biostatistics
(Lee 1980).

Example. Consider a setting in which there are four subpopulations of the
general population, categorized by the four combinations of values of two
binary covariates Z1, Z2 = 0, 1. Suppose that these four combinations have
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Figure 2.3: Force of Mortality Functions for Weibull and Gamma Probability
Densities. In each case, the parameters are fixed in such a way that the
expected survival time is 75 years.
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Lognormal(mu,sigma^2)
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Makeham(A,B,c)
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Figure 2.4: Force of Mortality Functions for Lognormal and Makeham Den-
sities. In each case, the parameters are fixed in such a way that the expected
survival time is 75 years.
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Plots of Theoretical Survival Curves
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Figure 2.5: Theoretical survival curves, for ages 40 and above, plotted as
lines for comparison with 1959 US male life-table survival probabilities plot-
ted as points. The four analytical survival curves — Lognormal, Weibull,
Gamma, and Gompertz — are taken as models for age-at-death minus 40,
so if Stheor(t) denotes the theoretical survival curve with indicated parame-
ters, the plotted curve is (t, 0.925 · Stheor(t− 40)). The parameters of each
analytical model were determined so that the plotted probabilities would be
0.925, 0.5, 0.04 respectively at t = 40, 72, 90.
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respective conditional probabilities for lives aged x (or relative frequencies in
the general population aged x)

Px(Z1 = Z2 = 0) = 0.15 , Px(Z1 = 0, Z2 = 1) = 0.2

Px(Z1 = 1, Z2 = 0) = 0.3 , Px(Z1 = Z2 = 1) = 0.35

and that for a life aged x and all t > 0,

P (T ≥ x+ t |T ≥ x, Z1 = z1, Z2 = z2) = exp(−2.5 e0.7z1−.8z2 t2/20000)

It can be seen from the conditional survival function just displayed that the
forces of mortality at ages greater than x are

µ(x+ t) = (2.5 e0.7z1−.8z2) t/10000

so that the force of mortality at all ages is multiplied by e0.7 = 2.0138 for
individuals with Z1 = 1 versus those with Z1 = 0, and is multiplied by
e−0.8 = 0.4493 for those with Z2 = 1 versus those with Z2 = 0. The effect
on age-specific death-rates is approximately the same. Direct calculation
shows for example that the ratio of age-specific death rate at age x+20 for
individuals in the group with (Z1 = 1, Z2 = 0) versus those in the group with
(Z1 = 0, Z2 = 0) is not precisely e0.7 = 2.014, but rather

1− exp(−2.5e0.7((212 − 202)/20000)

1− exp(−2.5((212 − 202)/20000)
= 2.0085

Various calculations, related to the fractions of the surviving population at
various ages in each of the four population subgroups, can be performed
easily . For example, to find

P (Z1 = 0, Z2 = 1 |T ≥ x+ 30)

we proceed in several steps (which correspond to an application of Bayes’
rule, viz. Hogg and Tanis 1997, sec. 2.5, or Larson 1982, Sec. 2.6):

P (T ≥ x+30, Z1 = 0Z2 = 1|T ≥ x) = 0.2 exp(−2.5e−0.8 302

20000
) = 0.1901

and similarly

P (T ≥ x+ 30 |T ≥ x) = 0.15 exp(−2.5(302/20000)) + 0.1901 +
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+ 0.3 exp(−2.5 ∗ e0.7 302

20000
) + 0.35 exp(−2.5e0.7−0.8 302

20000
) = 0.8795

Thus, by definition of conditional probabilities (restricted to the cohort of
lives aged x), taking ratios of the last two displayed quantities yields

P (Z1 = 0, Z2 = 1 |T ≥ x+ 30) =
0.1901

0.8795
= 0.2162

2.

In biostatistics and epidemiology, the measured variables Z = (Z1, . . . , Zp)
recorded for each individual in a survival study might be: indicator of a spe-
cific disease or diagnostic condition (e.g., diabetes, high blood pressure, spe-
cific electrocardiogram anomaly), quantitative measurement of a risk-factor
(dietary cholesterol, percent caloric intake from fat, relative weight-to-height
index, or exposure to a toxic chemical), or indicator of type of treatment or
intervention. In these fields, the objective of such detailed models of covari-
ate effects on survival can be: to correct for incidental individual differences
in assessing the effectiveness of a treatment; to create a prognostic index for
use in diagnosis and choice of treatment; or to ascertain the possible risks and
benefits for health and survival from various sorts of life-style interventions.
The multiplicative effects of various risk-factors on age-specific death rates
are often highlighted in the news media.

In an insurance setting, categorical variables for risky life-styles, occupa-
tions, or exposures might be used in risk-rating, i.e., in individualizing insur-
ance premiums. While risk-rating is used routinely in casualty and property
insurance underwriting, for example by increasing premiums in response to
recent claims or by taking location into account, it can be politically sen-
sitive in a life-insurance and pension context. In particular, while gender
differences in mortality can be used in calculating insurance and annuity
premiums, as can certain life-style factors like smoking, it is currently illegal
to use racial and genetic differences in this way.

All life insurers must be conscious of the extent to which their policyhold-
ers as a group differ from the general population with respect to mortality.
Insurers can collect special mortality tables on special groups, such as em-
ployee groups or voluntary organizations, and regression-type models like the
Cox proportional-hazards model may be useful in quantifying group mortal-
ity differences when the special-group mortality tables are not based upon
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large enough cohorts for long enough times to be fully reliable. See Chapter
6, Section 6.3, for discussion about the modification of insurance premiums
for select groups.

2.3 Exercise Set 2

(1). The sum of the present value of $1 paid at the end of n years and
$1 paid at the end of 2n years is $1. Find (1+ r)2n, where r = annual
interest rate, compounded annually.

(2). Suppose that an individual aged 20 has random lifetime Z with
continuous density function

fZ(t) =
1

360

(

1 +
t

10

)

, for 20 ≤ t ≤ 80

and 0 for other values of t.

(a) If this individual has a contract with your company that you must
pay his heirs $106 · (1.4−Z/50) at the exact date of his death if this occurs
between ages 20 and 70, then what is the expected payment ?

(b) If the value of the death-payment described in (a) should properly be
discounted by the factor exp(−0.08 · (Z − 20)), i.e. by the nominal interest
rate of e0.08 − 1 per year) to calculate the present value of the payment,
then what is the expected present value of the payment under the insurance
contract ?

(3). Suppose that a continuous random variable T has hazard rate function
(= force of mortality)

h(t) = 10−3 ·
[

7.0− 0.5t+ 2et/20
]

, t > 0

This is a legitimate hazard rate of Gompertz-Makeham type since its mini-
mum, which occurs at t = 20 ln(5), is (17−10 ln(5)) ·10−4 = 9.1 ·10−5 > 0.

(a) Construct a cohort life-table with h(t) as “force of mortality”, based
on integer ages up to 70 and cohort-size (= “radix”) l0 = 105. (Give the
numerical entries, preferably by means of a little computer program. If you
do the arithmetic using hand-calculators and/or tables, stop at age 20.)



52 CHAPTER 2. INTEREST & FORCE OF MORTALITY

(b) What is the probability that the random variable T exceeds 30, given
that it exceeds 3 ? Hint: find a closed-form formula for S(t) = P (T ≥ t).

(4). Do the Mortgage-Refinancing exercise given in the Illustrative on mort-
gage refinancing at the end of Section 2.1.

(5). (a) The mortality pattern of a certain population may be described as
follows: out of every 98 lives born together, one dies annually until there
are no survivors. Find a simple function that can be used as S(x) for this
population, and find the probability that a life aged 30 will survive to attain
age 35.

(b) Suppose that for x between ages 12 and 40 in a certain population,
10% of the lives aged x die before reaching age x+1 . Find a simple function
that can be used as S(x) for this population, and find the probability that
a life aged 30 will survive to attain age 35.

(6). Suppose that a survival distribution (i.e., survival function based on
a cohort life table) has the property that 1px = γ · (γ2)x for some fixed γ
between 0 and 1, for every real ≥ 0. What does this imply about S(x) ?
(Give as much information about S as you can. )

(7). If the instantaneous interest rate is r(t) = 0.01 t for 0 ≤ t ≤ 3, then
find the equivalent single effective rate of interest or APR for money invested
at interest over the interval 0 ≤ t ≤ 3 .

(8). Find the accumulated value of $100 at the end of 15 years if the nominal
interest rate compounded quarterly (i.e., i(4) ) is 8% for the first 5 years, if
the effective rate of discount is 7% for the second 5 years, and if the nominal
rate of discount compounded semiannually (m = 2) is 6% for the third 5
years.

(9). Suppose that you borrow $1000 for 3 years at 6% APR, to be repaid
in level payments every six months (twice yearly).

(a) Find the level payment amount P .

(b) What is the present value of the payments you will make if you skip
the 2nd and 4th payments ? (You may express your answer in terms of P . )

(10). A survival function has the form S(x) = c−x
c+x

. If a mortality table
is derived from this survival function with a radix l0 of 100,000 at age 0,
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and if l35 = 44, 000 :

(i) What is the terminal age of the table ?

(ii) What is the probability of surviving from birth to age 60 ?

(iii) What is the probability of a person at exact age 10 dying between
exact ages 30 and 45 ?

(11). A separate life table has been constructed for each calendar year of
birth, Y , beginning with Y = 1950. The mortality functions for the
various tables are denoted by the appropriate superscript Y . For each Y
and for all ages x

µYx = A · k(Y ) + B cx , pY+1x = (1 + r) pYx

where k is a function of Y alone and A, B, r are constants (with r > 0).
If k(1950) = 1, then derive a general expression for k(Y ).

(12). A standard mortality table follows Makeham’s Law with force of
mortality

µx = A + B cx at all ages x

A separate, higher-risk mortality table also follows Makeham’s Law with
force of mortality

µ∗x = A∗ + B∗ cx at all ages x

with the same constant c. If for all starting ages the probability of surviving
6 years according to the higher-risk table is equal to the probability of
surviving 9 years according to the standard table, then express each of A∗

and B∗ in terms of A, B, c.

(13). A homeowner borrows $100, 000 at 7% APR from a bank, agreeing
to repay by 30 equal yearly payments beginning one year from the time of
the loan.

(a) How much is each payment ?

(b) Suppose that after paying the first 3 yearly payments, the homeowner

misses the next two (i.e. pays nothing on the 4th and 5th anniversaries of

the loan). Find the outstanding balance at the 6th anniversary of the loan,
figured at 7% ). This is the amount which, if paid as a lump sum at time
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6, has present value together with the amounts already paid of $100, 000 at
time 0.

(14). A deposit of 300 is made into a fund at time t = 0. The fund pays
interest for the first three years at a nominal monthly rate d(12) of discount.
From t = 3 to t = 7, interest is credited according to the force of interest
δt = 1/(3t + 3). As of time t = 7, the accumulated value of the fund is
574. Calculate d(12).

(15). Calculate the price at which you would sell a $10, 000 30-year coupon
bond with nominal 6% semi-annual coupon (n = 30, m − 2, i(m) = 0.06),
15 years after issue, if for the next 15 years, the effective interest rate for
valuation is iAPR = 0.07.

(16). Calculate the price at which you would sell a 30-year zero-coupon bond
with face amount $10, 000 initially issued 15 years ago with i = iAPR = 0.06,
if for the next 15 years, the effective interest rate for valuation is iAPR = 0.07.

2.4 Worked Examples

Example 1. How large must a half-yearly payment be in order that the stream
of payments starting immediately be equivalent (in present value terms) at
6% interest to a lump-sum payment of $5000, if the payment-stream is to
last (a) 10 years, (b) 20 years, or (c) forever ?

If the payment size is P , then the balance equation is

5000 = 2P · ä(2)ne = 2P
1− 1.06−n

d(2)

Since d(2) = 2(1− 1/
√
1.06) = 2 · 0.02871, the result is

P = (5000 · 0.02871)/(1− 1.06−n) = 143.57/(1− 1.06−n)

So the answer to part (c), in which n =∞, is $143.57. For parts (a) and
(b), respectively with n = 10 and 20, the answers are $325.11, $208.62.

Example 2. Assume m is divisible by 2. Express in two differ-
ent ways the present value of the perpetuity of payments 1/m at times
1/m, 3/m, 5/m, . . . , and use either one to give a simple formula.
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This example illustrates the general methods enunciated at the beginning
of Section 2.1. Observe first of all that the specified payment-stream is
exactly the same as a stream of payments of 1/m at times 0, 2/m, 4/m, . . .
forever, deferred by a time 1/m. Since this payment-stream starting at 0

is exactly one-half that of the stream whose present value is ä
(m/2)
∞e , a first

present value expression is

v1/m
1

2
ä
(m/2)
∞e

A second way of looking at the payment-stream at odd multiples of 1/m
is as the perpetuity-due payment stream ( 1/m at times k/m for all
k ≥ 0) minus the payment-stream discussed above of amounts 1/m at
times 2k/m for all nonnegative integers k. Thus the present value has the
second expression

ä
(m)
∞e − 1

2
ä
(m/2)
∞e

Equating the two expressions allows us to conclude that

1

2
ä
(m/2)
∞e = ä

(m)
∞e

/

(1 + v1/m)

Substituting this into the first of the displayed present-value expressions, and
using the simple expression 1/d(m) for the present value of the perpetuity-
due, shows that that the present value requested in the Example is

1

d(m)
· v1/m

1 + v1/m
=

1

d(m) (v−1/m + 1)
=

1

d(m) (2 + i(m)/m)

and this answer is valid whether or not m is even.

Example 3. Suppose that you are negotiating a car-loan of $10, 000. Would
you rather have an interest rate of 4% for 4 years, 3% for 3 years, 2% for
2 years, or a cash discount of $500 ? Show how the answer depends upon
the interest rate with respect to which you calculate present values, and give
numerical answers for present values calculated at 6% and 8%. Assume that
all loans have monthly payments paid at the beginning of the month (e.g., the
4 year loan has 48 monthly payments paid at time 0 and at the ends of 47
succeeding months).

The monthly payments for an n-year loan at interest-rate i is 10000/

(12 ä
(12)
ne ) = (10000/12) d(12)/(1 − (1 + i)−n). Therefore, the present value
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at interest-rate r of the n-year monthly payment-stream is

10000 · 1− (1 + i)−1/12

1− (1 + r)−1/12
· 1− (1 + r)−n

1− (1 + i)−n

Using interest-rate r = 0.06, the present values are calculated as follows:

For 4-year 4% loan: $9645.77

For 3-year 3% loan: $9599.02

For 2-year 2% loan: $9642.89

so that the most attractive option is the cash discount (which would make
the present value of the debt owed to be $9500). Next, using interest-rate
r = 0.08, the present values of the various options are:

For 4-year 4% loan: $9314.72

For 3-year 3% loan: $9349.73

For 2-year 2% loan: $9475.68

so that the most attractive option in this case is the 4-year loan. (The cash
discount is now the least attractive option.)

Example 4. Suppose that the force of mortality µ(y) is specified for exact
ages y ranging from 5 to 55 as

µ(y) = 10−4 · (20− 0.5|30− y|)
Then find analytical expressions for the survival probabilities S(y) for exact
ages y in the same range, and for the (one-year) death-rates qx for integer
ages x = 5, . . . , 54, assuming that S(5) = 0.97.

The key formulas connecting force of mortality and survival function are
here applied separately on the age-intervals [5, 30] and [30, 55], as follows.
First for 5 ≤ y ≤ 30,

S(y) = S(5) exp(−
∫ y

5

µ(z) dz) = 0.97 exp
(

−10−4(5(y−5)+0.25(y2−25))
)

so that S(30) = 0.97 e−0.034375 = 0.93722, and for 30 ≤ y ≤ 55

S(y) = S(30) exp
(

− 10−4
∫ y

30

(20 + 0.5(30− z)) dz
)
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= 0.9372 exp
(

− .002(y − 30) + 2.5 · 10−5(y − 30)2
)

The death-rates qx therefore have two different analytical forms: first, in
the case x = 5, . . . , 29,

qx = S(x+ 1)/S(x) = exp
(

− 5 · 10−5 (10.5 + x)
)

and second, in the case x = 30, . . . , 54,

qx = exp
(

− .002 + 2.5 · 10−5(2(x− 30) + 1)
)
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2.5 Useful Formulas from Chapter 2

v = 1/(1 + i)

p. 24

a
(m)
ne =

1− vn

i(m)
, ä

(m)
ne =

1− vn

d(m)

pp. 25–25

anem = v1/m änem

p. 25

ä
(∞)
ne = ane∞ = an =

1− vn

δ
p. 25

a
(m)
∞e =

1

i(m)
, ä∞em =

1

d(m)

p. 26

(I(m)ä)
(m)
ne = ä

(m)
∞e

(

ä
(m)
ne − n vn

)

p. 28

(D(m)ä)
(m)
ne = (n+

1

m
) ä
(m)
ne − (I(m)ä)

(m)
ne

p. 28

n-yr m’thly Mortgage Paymt :
Loan Amt

m ä
(m)
ne

p. 29
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n-yr Mortgage Bal. at
k

m
+ : Bn,k/m =

1− vn−k/m

1− vn

p. 30

tpx =
S(x+ t)

S(x)
= exp

(

−
∫ t

0

µ(x+ s) ds

)

p. 38

tpx = 1 − tpx

p. 38

qx = 1qx =
dx
lx

, px = 1px = 1 − qx

p. 38

µ(x+ t) =
f(x+ t)

S(x+ t)
= − ∂

∂t
lnS(x+ t) = − ∂

∂t
ln lx+t

p. 39

S(x) = exp(−
∫ x

0

µ(y) dy)

p. 42

Unif. Failure Dist.: S(x) =
ω − x

ω
, f(x) =

1

ω
, 0 ≤ x ≤ ω

p. 42

Expon. Dist.: S(x) = e−µx , f(x) = µe−µx , µ(x) = µ , x > 0

p. 42
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Weibull. Dist.: S(x) = e−λx
γ

, µ(x) = λγxγ−1 , x > 0

p. 42

Makeham: µ(x) = A+Bcx , x ≥ 0

Gompertz: µ(x) = Bcx , x ≥ 0

S(x) = exp

(

−Ax− B

ln c
(cx − 1)

)

p. 44



Chapter 3

More Probability Theory for
Life Tables

3.1 Interpreting Force of Mortality

This Section consists of remarks, relating the force of mortality for a con-
tinuously distributed lifetime random variable T (with continuous density
function f ) to conditional probabilities for discrete random variables. In-
deed, for m large (e.g. as large as 4 or 12), the discrete random variable
[Tm]/m gives a close approximation to T and represents the attained age
at death measured in whole-number multiples of fractions h = one mth of
a year. (Here [·] denotes the greatest integer less than or equal to its real
argument.) Since surviving an additional time t = nh can be viewed as
successively surviving to reach times h, 2h, 3h, . . . , nh, and since (by the
definition of conditional probability)

P (A1 ∩ · · · ∩ An) = P (A1) · P (A2|A1) · · ·P (An|A1 ∩ · · · ∩ An−1)

we have (with the interpretation Ak = {T ≥ x+ kh} )

nhpx = hpx · hpx+h · hpx+2h · · · hpx+(n−1)h

The form in which this formula is most often useful is the case h = 1: for
integers k ≥ 2,

kpx = px · px+1 · px+2 · · · px+k−1 (3.1)

61
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Every continuous waiting-time random variable can be approximated by
a discrete random variable with possible values which are multiples of a
fixed small unit h of time, and therefore the random survival time can
be viewed as the (first failure among a) succession of results of a sequence
of independent coin-flips with successive probabilities hpkh of heads. By
the Mean Value Theorem applied up to second-degree terms on the function
S(x+ h) expanded about h = 0,

S(x+h) = S(x) + hS ′(x) +
h2

2
S ′′(x+τh) = S(x)− hf(x)− h2

2
f ′(x+τh)

for some 0 < τ < 1, if f is continuously differentiable. Therefore, using
the definition of µ(x) as f(x)/S(x) given on page 39,

hpx = 1 − h ·
[S(x)− S(x+ h)

hS(x)

]

= 1 − h
(

µ(x) +
h

2

f ′(x+ τh)

S(x)

)

Going in the other direction, the previously derived formula

hpx = exp

(

−
∫ x+h

x

µ(y) dy

)

can be interpreted by considering the fraction of individuals observed to reach
age x who thereafter experience hazard of mortality µ(y) dy on successive
infinitesimal intervals [y, y+dy] within [x, x+h). The lives aged x survive
to age x + h with probability equal to a limiting product of infinitesimal
terms (1−µ(y) dy) ∼ exp(−µ(y) dy), yielding an overall conditional survival
probability equal to the negative exponential of accumulated hazard over
[x, x+ h).

3.2 Interpolation Between Integer Ages

There is a Taylor-series justification of “actuarial approximations” for life-
table related functions. Let g(x) be a smooth function with small |g ′′(x)| ,
and let T be the lifetime random variable (for a randomly selected member
of the population represented by the life-table), with [T ] denoting its integer
part, i.e., the largest integer k for which k ≤ T . Then by the Mean Value
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Theorem, applied up to second-degree terms for the function g(t) = g(k+u)
(with t = k + u, k = [t]) expanded in u ∈ (0, 1) about 0,

E(g(T )) = E(g([T ]) + (T − [T ]) g′([T ]) +
1

2
(T − [T ])2 g′′(T∗)) (3.2)

where T∗ lies between [T ] and T . Now in case the rate-of-change of
g′ is very small, the third term may be dropped, providing the approximate
formula

E(g(T )) ≈ Eg([T ]) + E
(

(T − [T ]) g′([T ])
)

(3.3)

Simplifications will result from this formula especially if the behavior of con-
ditional probabilities concerning T − [T ] given [T ] = k turns out not to
depend upon the value of k. (This property can be expressed by saying
that the random integer [T ] and random fractional part T − [T ] of the
age at death are independent random variables.) This is true in particular
if it is also true that P (T − [T ] ≥ s | k ≤ T < k + 1) is approximately
1 − s for all k and for 0 < s < 1, as would be the case if the density
of T were constant on each interval [k, k + 1) (i.e., if the distribution
of T were conditionally uniform given [T ] ): then T − [T ] would be
uniformly distributed on [0, 1), with density f(s) = 1 for 0 ≤ s < 1. Then
E((T − [T ]) g′([T ])) = E(g′([T ]))/2, implying by (3.3) that

E(g(T )) ≈ E(g([T ]) +
1

2
g′([T ])) ≈ E

(

g([T ] +
1

2
)
)

where the last step follows by the first-order Taylor approximation

g(k + 1/2) ≈ g(k) +
1

2
g′(k)

One particular application of the ideas of the previous paragraph concern
so-called expected residual lifetimes. Demographers tabulate, for all integer
ages x in a specified population, what is the average number ex of remaining
years of life to individuals who have just attained exact age x. This is a
quantity which, when compared across national or generational boundaries,
can give some insight into the way societies differ and change over time.
In the setting of the previous paragraph, we are considering the function
g(t) = t−x for a fixed x, and calculating expectations E(·) conditionally
for a life aged x, i.e. conditionally given T ≥ x. In this setting, the
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approximation described above says that if we can treat the density of T
as constant within each whole year of attained integer age, then

Mean residual lifetime = ex ≈ ◦
ex +

1

2

where
◦
ex denotes the so-called curtate mean residual life which measures

the expectation of [T ] − x given T ≥ x, i.e., the expected number of
additional birthdays or whole complete years of life to a life aged exactly x.

“Actuarial approximations” often involve an assumption that a life-table
time until death is conditionally uniformly distributed, i.e., its density is
piecewise-constant, over intervals [k, k+1) of age. The following paragraphs
explore this and other possibilities for survival-function interpolation between
integer ages.

One approach to approximating survival and force-of-mortality functions
at non-integer values is to use analytical or what statisticians call parametric
models S(x;ϑ) arising in Examples (i)-(v) above, where ϑ denotes in each
case the vector of real parameters needed to specify the model. Data on
survival at integer ages x can be used to estimate or fit the value of the
scalar or vector parameter ϑ, after which the model S(x;ϑ) can be used
at all real x values. We will see some instances of this in the exercises.
The disadvantage of this approach is that actuaries do not really believe that
any of the simple models outlined above ought to fit the whole of a human
life table. Nevertheless they can and do make assumptions on the shape of
S(x) in order to justify interpolation-formulas between integer ages.

Now assume that values S(k) for k = 0, 1, 2, . . . have been specified or
estimated. Approximations to S(x), f(x) and µ(x) between integers are
usually based on one of the following assumptions:

(i) (Piecewise-uniform density) f(k + t) is constant for 0 ≤ t < 1 ;

(ii) (Piecewise-constant hazard) µ(k + t) is constant for 0 ≤ t < 1 ;

(iii) (Balducci hypothesis) 1/S(k + t) is linear for 0 ≤ t < 1 .

Note that for integers k and 0 ≤ t ≤ 1,

S(k + t)
− lnS(k + t)
1/S(k + t)







is linear in t under







assumption (i)
assumption (ii)
assumption (iii)

(3.4)
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Under assumption (i), the slope of the linear function S(k+ t) at t = 0 is
− f(k), which implies easily that S(k + t) = S(k)− tf(k), i.e.,

f(k) = S(k)− S(k + 1) , and µ(k + t) =
f(k)

S(k)− tf(k)

so that under (i),

µ(k +
1

2
) = fT (k +

1

2
)
/

ST (k +
1

2
) (3.5)

Under (ii), where µ(k + t) = µ(k), (3.5) also holds, and

S(k + t) = S(k) e−t µ(k) , and pk =
S(k + 1)

S(k)
= e−µ(k)

Under (iii), for 0 ≤ t < 1,

1

S(k + t)
=

1

S(k)
+ t
( 1

S(k + 1)
− 1

S(k)

)

(3.6)

When equation (3.6) is multiplied through by S(k + 1) and terms are
rearranged, the result is

S(k + 1)

S(k + t)
= t + (1− t)

S(k + 1)

S(k)
= 1 − (1− t) qk (3.7)

Recalling that tqk = 1 − (S(k + t)/S(k)), reveals assumption (iii) to be
equivalent to

1−tqk+t = 1− S(k + 1)

S(k + t)
= (1− t)

(

1− S(k + 1)

S(k)

)

= (1− t) qk (3.8)

Next differentiate the logarithm of the formula (3.7) with respect to t, to
show (still under (iii)) that

µ(k + t) = − ∂

∂t
ln S(k + t) =

qk
1− (1− t)qk

(3.9)

The most frequent insurance application for the interpolation assump-
tions (i)-(iii) and associated survival-probability formulas is to express prob-
abilities of survival for fractional years in terms of probabilities of whole-year
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survival. In terms of the notations tpk and qk for integers k and 0 < t < 1,
the formulas are:

tpk = 1 − (S(k)− t(S(k + 1)− S(k))

S(k)
= 1− t qk under (i) (3.10)

tpk =
S(k + t)

S(x)
=
(

e−µ(k)
)t

= (1− qk)
t under (ii) (3.11)

tpk =
S(k + t)

S(k + 1)

S(k + 1)

S(k)
=

1− qk
1− (1− t)qk

under (iii) (3.12)

The application of all of these formulas can be understood in terms of the
formula for expectation of a function g(T ) of the lifetime random variable T .
(For a concrete example, think of g(T ) = (1 + i)−T as the present value to
an insurer of the payment of $1 which it will make instantaneously at the
future time T of death of a newborn which it undertakes to insure.) Then
assumptions (i), (ii), or (iii) via respective formulas (3.10), (3.11), and (3.12)
are used to substitute into the final expression of the following formulas:

E
(

g(T )
)

=

∫ ∞

0

g(t) f(t) dt =
ω−1
∑

k=0

∫ 1

0

g(t+ k) f(t+ k) dt

=
ω−1
∑

k=0

S(k)

∫ 1

0

g(t+ k)
(

− ∂

∂t
tpk

)

dt

3.3 Binomial Variables &

Law of Large Numbers

This Section develops just enough machinery for the student to understand
the probability theory for random variables which count numbers of successes
in large numbers of independent biased coin-tosses. The motivation is that in
large life-table populations, the number lx+t who survive t time-units after
age x can be regarded as the number of successes or heads in a large number
lx of independent coin-toss trials corresponding to the further survival of each
of the lx lives aged x , which for each such life has probability tpx. The one
preliminary piece of mathematical machinery which the student is assumed
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to know is the Binomial Theorem stating that (for positive integers N
and arbitrary real numbers x, y, z),

(1 + x)N =
N
∑

k=0

(

N

k

)

xk , (y + z)N =
N
∑

k=0

(

N

k

)

yk zN−k

Recall that the first of these assertions follows by equating the kth deriv-
iatives of both sides at x = 0, where k = 0, . . . , N . The second assertion
follows immediately, in the nontrivial case when z 6= 0, by applying the first
assertion with x = y/z and multiplying both sides by zN . This Theo-
rem also has a direct combinatorial consequence. Consider the two-variable
polynomial

(y + z)N = (y + z) · (y + z) · · · (y + z) N factors

expanded by making all of the different choices of y or z from each of
the N factors (y + z), multiplying each combination of choices out to
get a monomial yj zN−j, and adding all of the monomials together. Each
combined choice of y or z from the N factors (y+z) can be represented
as a sequence (a1, . . . , an) ∈ {0, 1}N , where ai = 1 would mean that y

is chosen ai = 0 would mean that z is chosen in the ith factor. Now
a combinatorial fact can be deduced from the Binomial Theorem: since the
coefficient

(

N
k

)

is the total number of monomial terms yk zN−k which are
collected when (y+z)N is expanded as described, and since these monomial
terms arise only from the combinations (a1, . . . , aN) of {y, z} choices in
which precisely k of the values aj are 1’s and the rest are 0’s,

The number of symbol-sequences (a1, . . . , aN) ∈ {0, 1}N such
that

∑N
j=1 aj = k is given by

(

N
k

)

, for k = 0, 1, . . . , N . This
number

(

N

k

)

=
N(N − 1) · · · (N − k + 1)

k!

spoken as ‘N choose k’, therefore counts all of the ways of choosing
k element subsets (the positions j from 1 to N where 1’s occur)
out of N objects.

The random experiment of interest in this Section consists of a large num-
ber N of independent tosses of a coin, with probability p of coming up heads
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each time. Such coin-tossing experiments — independently replicated two-
outcome experiments with probability p of one of the outcomes, designated
‘success’ — are called Bernoulli(p) trials. The space of possible heads-
and-tails configurations, or sample space for this experiment, consists of the
strings of N zeroes and ones, with each string a = (a1, . . . , aN) ∈ {0, 1}N
being assigned probability pa (1− p)N−a, where a ≡∑N

j=1 aj. The rule by
which probabilities are assigned to sets or events A of more than one string
a ∈ {0, 1}N is to add the probabilities of all individual strings a ∈ A. We
are particularly interested in the event (denoted [X = k]) that precisely k
of the coin-tosses are heads, i.e., in the subset [X = k] ⊂ {0, 1}N consisting
of all strings a such that

∑N
j=1 aj = k. Since each such string has the same

probability pk (1 − p)N−k, and since, according to the discussion following
the Binomial Theorem above, there are

(

N
k

)

such strings, the probability
which is necessarily assigned to the event of k successes is

P( k successes in N Bernoulli(p) trials ) = P (X = k) =

(

N

k

)

pk (1−p)N−k

By virtue of this result, the random variable X equal to the number of suc-
cesses in N Bernoulli(p) trials, is said to have the Binomial distribution
with probability mass function pX(k) =

(

N
k

)

pk (1− p)N−k.

With the notion of Bernoulli trials and the binomial distribution in hand,
we now begin to regard the ideal probabilities S(x + t)/S(x) as true but
unobservable probabilities tpx = p with which each of the lx lives aged x
will survive to age x + t . Since the mechanisms which cause those lives
to survive or die can ordinarily be assumed to be acting independently in a
probabilistic sense, we can regard the number lx+t of lives surviving to the
(possibly fractional) age x+t as a Binomial random variable with parameters
N = lx, p = tpx. From this point of view, the observed life-table counts
lx should be treated as random data which reflect but do not define the
underlying probabilities xp0 = S(x) of survival to age x. However, common
sense and experience suggest that, when l0 is large, and therefore the other
life-counts lx for moderate values x are also large, the observed ratios
lx+t/lx should reliably be very close to the ‘true’ probability tpx. In other
words, the ratio lx+t/lx is a statistical estimator of the unknown constant

tpx . The good property, called consistency, of this estimator to be close with
very large probability (based upon large life-table size) to the probability it
estimates, is established in the famous Law of Large Numbers. The



3.3. BINOMIAL VARIABLES & LAW OF LARGE NUMBERS 69

precise quantitative inequality proved here concerning binomial probabilities
is called a Large Deviation Inequality and is very important in its own right.

Theorem 3.3.1 Suppose that X is a Binomial(N, p) random variable,
denoting the number of successes in N Bernoulli(p) trials.

(a) Large Deviation Inequalities. If 1 > b > p > c > 0, then

P (X ≥ Nb) ≤ exp
{

−N
[

b ln

(

b

p

)

+ (1− b) ln

(

1− b

1− p

)

]}

P (X ≤ Nc) ≤ exp
{

−N
[

c ln

(

c

p

)

+ (1− c) ln

(

1− c

1− p

)

]}

(b) Law of Large Numbers. For arbitrarily small fixed δ > 0, not de-
pending upon N , the number N of Bernoulli trials can be chosen so large
that

P
(∣

∣

∣

X

N
− p

∣

∣

∣
≥ δ
)

≤ δ

Proof. After the first inequality in (a) is proved, the second inequality
will be derived from it, and part (b) will follow from part (a). Since the
event [X ≥ Nb] is the union of the disjoint events [X = k] for k ≥ Nb,
which in turn consist of all outcome-strings (a1, . . . , aN) ∈ {0, 1}N for
which

∑N
j=1 aj = k ≥ Nb, a suitable subset of the binomial probability

mass function values pX(k) are summed to provide

P (X ≥ Nb) =
∑

k:Nb≤k≤N
P (X = k) =

∑

k≥Nb

(

N

k

)

pk (1− p)N−k

For every s > 1, this probability is

≤
∑

k≥Nb

(

N

k

)

pk (1− p)N−k sk−Nb = s−Nb
∑

k≥Nb

(

N

k

)

(ps)k (1− p)N−k

≤ s−Nb

N
∑

k=0

(

N

k

)

(ps)k (1− p)N−k = s−Nb (1− p+ ps)N
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Here extra terms (corresponding to k < Nb) have been added in the next-
to-last step, and the binomial theorem was applied in the last step. The trick
in the proof comes now: since the left-hand side of the inequality does not
involve s while the right-hand side does, and since the inequality must be
valid for every s > 1, it remains valid if the right-hand side is minimized
over s. The calculus minimum does exist and is unique, as you can check by
calculating that the second derivative in s is always positive. The minimum
occurs where the first derivative of the logarithm of the last expression is 0,
i.e., at s = b(1− p)/(p(1− b)). Substituting this value for s yields

P (X ≥ Nb) ≤
(

b (1− p)

p (1− b)

)−Nb (
1− p

1− b

)N

= exp

(

−N
[

b ln
( b

p

)

+ (1− b) ln
(1− b

1− p

)]

)

as desired.

The second part of assertion (a) follows from the first. Replace X by
Y = N − X. Since Y also is a count of ‘successes’ in Bernoulli(1 − p)
trials, where the ‘successes’ counted by Y are precisely the ‘failures’ in the
Bernoulli trials defining X, it follows that Y also has a Binomial(N, q)
distribution, where q = 1 − p. Note also that c < p implies b = 1 − c >
1− p = q. Therefore, the first inequality applied to Y instead of X with
q = 1 − p replacing p and b = 1 − c, gives the second inequality for
P (Y ≥ Nb) = P (X ≤ Nc).

Note that for all r between 0, 1, the quantity r ln r
p
+ (1 − r) ln 1−r

1−p
as a function of r is convex and has a unique minimum of 0 at r =
p. Therefore when b > p > c, the upper bound given in part (a) for
N−1 lnP ([X ≥ bN ] ∪ [X ≤ cN ]) is strictly negative and does not involve
N . For part (b), let δ ∈ (0, min(p, 1 − p)) be arbitrarily small, choose
b = p + δ, c = p − δ, and combine the inequalities of part (a) to give the
precise estimate (b).

P (|X
N
− p| ≥ δ) ≤ 2 · exp(−Na) (3.13)

where

a = min
(

(p+ δ) ln(1 + δ
p
) + (1− p− δ) ln(1− δ

1−p) ,

(p− δ) ln(1− δ
p
) + (1− p+ δ) ln(1 + δ

1−p)
)

> 0 (3.14)
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This last inequality proves (b), and in fact gives a much stronger and numer-
ically more useful upper bound on the probability with which the so-called
relative frequency of success X/N differs from the true probability p of
success by as much as δ. The probabilities of such large deviations between
X/N and δ are in fact exponentially small as a function of the number N
of repeated Bernoulli(p) trials, and the upper bounds given in (a) on the
log-probabilities divided by N turn out to be the correct limits for large
N of these normalized log-probabilities. 2

3.3.1 Exact Probabilities, Bounds & Approximations

Suppose first that you are flipping 20, 000 times a coin which is supposed to
be fair (i.e., to have p = 1/2) . The probability that the observed number of
heads falls outside the range [9800, 10200] is, according to the inequalities
above,

≤ 2 · exp
[

− 9800 ln(0.98) − 10200 ln(1.02)
]

= 2 e−4.00 = 0.037

The inequalities (3.13)-(3.14) give only an upper bound for the actual bino-
mial probability, and 0.0046 is the exact probability with which the relative
frequency of heads based on 20000 fair coin-tosses lies outside the range
(0.98, 1.02). The ratio of the upper bound to the actual probability is rather
large (about 8), but the absolute errors are small.

To give a feeling for the probabilities with which observed life-table ratios
reflect the true underlying survival-rates, we have collected in Table 3.3.1 var-
ious exact binomial probabilities and their counterparts from the inequalities
of Theorem 3.3.1(a). The illustration concerns cohorts of lives aged x of var-
ious sizes lx, together with ‘theoretical’ probabilities kpx with which these
lives will survive for a period of k = 1, 5, or 10 years. The probability ex-
periment determining the size of the surviving cohort lx+k is modelled as the
tossing of lx independent coins with common heads-probability kpx: then
the surviving cohort-size lx+k is viewed as the Binomial(lx, kpx) random
variable equal to the number of heads in those coin-tosses. In Table 3.3.1 are
given various combinations of x, lx, k, kpx which might realistically arise in
an insurance-company life-table, together, with the true and estimated (from
Theorem 3.3.1) probabilities with which the ratios lx+k/lx agree with kpx
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to within a fraction δ of the latter. The formulas used to compute columns
6 and 7 of the table are (for n = lx, p = kpx):

True binomial probability =
∑

j:j/(np)∈[1−δ,1+δ]

(

n

j

)

pj (1− p)n−j

Lower bound for probability = 1 − (1+δ)−np(1+δ)
(

1− pδ

1− p

)−n(1−p−pδ)

− (1− δ)−np(1−δ)
(

1 +
pδ

1− p

)−n(1−p+pδ)

Columns 6 and 7 in the Table show how likely the life-table ratios are to be
close to the ‘theoretical’ values, but also show that the lower bounds, while
also often close to 1, are still noticeably smaller than the actual values. .

Much closer approximations to the exact probabilities for Binomial(n, p)
random variables given in column 6 of Table 3.3.1 are obtained from the
Normal distribution approximation

P (a ≤ X ≤ b) ≈ Φ

(

b− np
√

np(1− p)

)

− Φ

(

a− np
√

np(1− p)

)

(3.15)

where Φ is the standard normal distribution function given explicitly in
integral form in formula (3.20) below. This approximation is theDeMoivre-
Laplace Central Limit Theorem (Feller vol. 1, 1957, pp. 168-73), which
says precisely that the difference between the left- and right-hand sides of
(3.15) converges to 0 when p remains fixed, n → ∞. Moreover, the
refined form of the DeMoivre-Laplace Theorem given in the Feller (1957,
p. 172) reference says that each of the ratios of probabilities

P (X < a)
/

Φ
( a− np
√

np(1− p)

)

, P (X > b)
/[

1 − Φ
( b− np
√

np(1− p)

)]

converges to 1 if the ‘deviation’ ratios (b − np)/
√

np(1− p) and (a −
np)/

√

np(1− p) are of smaller order than n−1/6 when n gets large. This
result suggests the approximation

Normal approximation = Φ

(

npδ
√

np(1− p)

)

− Φ

(

−npδ
√

np(1− p)

)
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Table 3.1: Probabilities (in col. 6) with which various Binomial(lx, kpx)
random variables lie within a factor 1 ± δ of their expectations, together
with lower bounds for these probabilities derived from the large-deviation
inequalities (3.13)-(3.14). The final column contains the normal-distribution
(Central-Limit) approximations to the exact probabilities in column 6.

Cohort Age Time Prob. Toler. Pr. within Lower Normal
n = lx x k p =k px frac. δ within 1± δ bound approx.

10000 40 3 0.99 .003 .9969 .9760 .9972
10000 40 5 0.98 .004 .9952 .9600 .9949
10000 40 10 0.94 .008 .9985 .9866 .9985
1000 40 10 0.94 .020 .9863 .9120 .9877

10000 70 5 0.75 .020 .9995 .9950 .9995
1000 70 5 0.75 .050 .9938 .9531 .9938

10000 70 10 0.50 .030 .9973 .9778 .9973
1000 70 10 0.50 .080 .9886 .9188 .9886

for the true binomial probability P (|X − np| ≤ npδ), the formula of which
is displayed above. Although the deviation-ratios in this setting are actually
close to n−1/6, not smaller as they should be for applicability of the cited
result of Feller, the normal approximations in the final column of Table 3.3.1
below are sensationally close to the correct binomial probabilities in column
6. A still more refined theorem which justifies this is given by Feller (1972,
section XVI.7 leading up to formula 7.28, p. 553).

If the probabilities in Theorem 3.3.1(a) are generally much smaller than
the upper bounds given for them, then why are those bounds of interest ?
(These are 1 minus the probabilities illustrated in Table 3.3.1.) First,
they provide relatively quick hand-calculated estimates showing that large
batches of independent coin-tosses are extremely unlikely to yield relative
frequencies of heads much different from the true probability or limiting
relative frequency of heads. Another, more operational, way to render this
conclusion of Theorem 3.3.1(b) is that two very large insured cohorts with the
same true survival probabilities are very unlikely to have materially different
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survival experience. However, as the Table illustrates, for practical purposes
the normal approximation to the binomial probabilities of large discrepancies
from the expectation is generally much more precise than the large deviation
bounds of Theorem 3.3.1(a).

The bounds given in Theorem 3.3.1(a) get small with large N much
more rapidly than simpler bounds based on Chebychev’s inequality (cf. Hogg
and Tanis 1997, Larsen and Marx 1985, or Larson 1982). We can tolerate
the apparent looseness in the bounds because it can be shown that the ex-
ponential rate of decay as a function of N in the true tail-probabilities
PN = P (X ≥ Nb) or P (X ≤ Nc) in Theorem 3.3.1(a) (i.e., the constants
appearing in square brackets in the exponents on the right-hand sides of the
bounds) are exactly the right ones: no larger constants replacing them could
give correct bounds.

3.4 Simulation of Life Table Data

We began by regarding life-table ratios lx/l0 in large cohort life-tables as
defining integer-age survival probabilities S(x) = xp0. We said that if the
life-table was representative of a larger population of prospective insureds,
then we could imagine a newly presented life aged x as being randomly
chosen from the life-table cohort itself. We motivated the conditional prob-
ability ratios in this way, and similarly expectations of functions of life-table
death-times were averages over the entire cohort. Although we found the
calculus-based formulas for life-table conditional probabilities and expec-
tations to be useful, at that stage they were only ideal approximations of
the more detailed but still exact life-table ratios and sums. At the next
stage of sophistication, we began to describe the (conditional) probabilities

tpx ≡ S(x+ t)/S(x) based upon a smooth survival function S(x) as a true
but unknown survival distribution, hypothesized to be of one of a number
of possible theoretical forms, governing each member of the life-table cohort
and of further prospective insureds. Finally, we have come to view the life-
table itself as data, with each ratio lx+t/lx equal to the relative frequency of
success among a set of lx Bernoulli(tpx) trials which Nature performs upon
the set of lives aged x . With the mathematical justification of the Law
of Large Numbers, we come full circle: these relative frequencies are random
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variables which are not very random. That is, they are extremely likely to
lie within a very small tolerance of the otherwise unknown probabilities tpx .
Accordingly, the life-table ratios are, at least for very large-radix life tables,
highly accurate statistical estimators of the life-table probabilities which we
earlier tried to define by them.

To make this discussion more concrete, we illustrate the difference be-
tween the entries in a life-table and the entries one would observe as data
in a randomly generated life-table of the same size using the initial life-table
ratios as exact survival probabilities. We used as a source of life-table counts
the Mortality Table for U.S. White Males 1959-61 reproduced as Table 2 on
page 11 of C. W. Jordan’s (1967) book on Life Contingencies. That is, using
this Table with radix l0 = 105 , with counts lx given for integer ages x from
1 through 80, we treated the probabilities px = lx+1/lx for x = 0, . . . , 79 as
the correct one-year survival probabilities for a second, computer-simulated
cohort life-table with radix l∗0 = 105. Using simulated random variables
generated in Splus, we successively generated, as x runs from 1 to 79,
random variables l∗x+1 ∼ Binomial(l∗x, px). In other words, the mechanism of
simulation of the sequence l∗0, . . . , l

∗
79 was to make the variable l∗x+1 depend

on previously generated l∗1, . . . , l
∗
x only through l∗x, and then to generate

l∗x+1 as though it counted the heads in l∗x independent coin-tosses with
heads-probability px. A comparison of the actual and simulated life-table
counts for ages 9 to 79 in 10-year intervals, is given below. The complete
simulated life-table was given earlier as Table 1.1.

The implication of the Table is unsurprising: with radix as high as 105,
the agreement between the initial and randomly generated life-table counts
is quite good. The Law of Large Numbers guarantees good agreement, with
very high probability, between the ratios lx+10/lx (which here play the role of
the probability 10px of success in l∗x Bernoulli trials) and the corresponding
simulated random relative frequencies of success l∗x+10/l

∗
x. For example, with

x = 69, the final simulated count of 28657 lives aged 79 is the success-count in
56186 Bernoulli trials with success-probability 28814/56384 = .51103. With
this success-probability, assertion (a) and the final inequality proved in (b) of
the Theorem show that the resulting count will differ from .51103 · 56186 =
28712.8 by 300 or more (in either direction) with probability at most 0.08.
(Verify this by substituting in the formulas with 300 = δ · 56186).
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Table 3.2: Illustrative Real and Simulated Life-Table Data

Age x 1959-61 Actual Life-Table Simulated lx

9 96801 96753
19 96051 95989
29 94542 94428
39 92705 92576
49 88178 87901
59 77083 76793
69 56384 56186
79 28814 28657

3.4.1 Expectation for Discrete Random Variables

The Binomial random variables which have just been discussed are examples
of so-called discrete random variables, that is, random variables Z with a
discrete (usually finite) list of possible outcomes z, with a corresponding list
of probabilities or probability mass function values pZ(z) with which each of
those possible outcomes occur. (These probabilities pZ(z) must be positive
numbers which summed over all possible values z add to 1.) In an insur-
ance context, think for example of Z as the unforeseeable future damage or
liability upon the basis of which an insurer has to pay some scheduled claim
amount c(Z) to fulfill a specific property or liability insurance policy. The
Law of Large Numbers says that we can have a frequentist operational inter-
pretation of each of the probabilities pZ(z) with which a claim of size c(z)
is presented. In a large population of N independent policyholders, each
governed by the same probabilities pZ(·) of liability occurrences, for each
fixed damage-amount z we can imagine a series of N Bernoulli(pZ(z))

trials, in which the jth policyholder is said to result in a ‘success’ if he
sustains a damage amount equal to z , and to result in a ‘failure’ otherwise.
The Law of Large Numbers for these Bernoulli trials says that the number
out of these N policyholders who do sustain damage z is for large N
extremely likely to differ by no more than δN from N pZ(z).
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Returning to a general discussion, suppose that Z is a discrete random
variable with a finite list of possible values z1, . . . , zm, and let c(·) be a
real-valued (nonrandom) cost function such that c(Z) represents an eco-
nomically meaningful cost incurred when the random variable value Z is
given. Suppose that a large number N of independent individuals give rise
to respective values Zj, j = 1, . . . , N and costs c(Z1), . . . , c(ZN). Here in-
dependent means that the mechanism causing different individual Zj values
is such that information about the values Z1, . . . , Zj−1 allows no change in
the (conditional) probabilities with which Zj takes on its values, so that for
all j, i, and b1, . . . , bj−1,

P (Zj = zi |Z1 = b1, . . . , Zj−1 = bj−1 ) = pZ(zi)

Then the Law of Large Numbers, applied as above, says that out of the
large number N of individuals it is extremely likely that approximately
pZ(k) · N will have their Z variable values equal to k, where k ranges
over {z1, . . . , zm}. It follows that the average costs c(Zj) over the N
independent individuals — which can be expressed exactly as

N−1
N
∑

j=1

c(Zj) = N−1
m
∑

i=1

c(zi) ·#{j = 1, . . . , N : Zj = zi}

— is approximately given by

N−1
m
∑

i=1

c(zi) · (N pZ(zi)) =
m
∑

i=1

c(zi) pZ(zi)

In other words, the Law of Large Numbers implies that the average cost
per trial among the N independent trials resulting in random variable
values Zj and corresponding costs c(Zj) has a well-defined approximate
(actually, a limiting) value for very large N

Expectation of cost = E(c(Z)) =
m
∑

i=1

c(zi) pZ(zi) (3.16)

As an application of the formula for expectation of a discrete random
variable, consider the expected value of a cost-function g(T ) of a lifetime
random variable which is assumed to depend on T only through the function
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g([T ]) of the integer part of T . This expectation was interpreted earlier as
the average cost over all members of the specified life-table cohort. Now the
expectation can be verified to coincide with the life-table average previously
given, if the probabilities S(j) in the following expression are replaced by
the life-table estimators lj/l0. Since P ([T ] = k) = S(k) − S(k + 1), the
general expectation formula (3.16) yields

E(g(T )) = E(g([T ]) =
ω−1
∑

k=0

g(k) (S(k)− S(k + 1))

agreeing precisely with formula (1.2).

Just as we did in the context of expectations of functions of the life-
table waiting-time random variable T , we can interpret the Expectation as a
weighted average of values (costs, in this discussion) which can be incurred in
each trial, weighted by the probabilities with which they occur. There is an
analogy in the continuous-variable case, where Z would be a random variable
whose approximate probabilities of falling in tiny intervals [z, z + dz] are
given by fZ(z)dz, where fZ(z) is a nonnegative density function integrating
to 1. In this case, the weighted average of cost-function values c(z) which
arise when Z ∈ [z, z + dz], with approximate probability-weights fZ(z)dz,
is written as a limit of sums or an integral, namely

∫

c(z) f(z) dz.

3.4.2 Rules for Manipulating Expectations

We have separately defined expectation for continuous and discrete random
variables. In the continuous case, we treated the expectation of a specified
function g(T ) of a lifetime random variable governed by the survival function
S(x) of a cohort life-table, as the approximate numerical average of the values
g(Ti) over all individuals i with data represented through observed lifetime
Ti in the life-table. The discrete case was handled more conventionally,
along the lines of a ‘frequentist’ approach to the mathematical theory of
probability. First, we observed that our calculations with Binomial(n, p)
random variables justified us in saying that the sum X = Xn of a large
number n of independent coin-toss variables ε1, . . . , , εn, each of which is
1 with probability p and 0 otherwise, has a value which with very high
probability differs from n·p by an amount smaller than δn, where δ > 0 is
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an arbitrarily small number not depending upon n. The Expectation p of
each of the variables εi is recovered approximately as the numerical average
X/n = n−1

∑n
i=1 εi of the independent outcomes εi of independent trials.

This Law of Large Numbers extends to arbitrary sequences of independent
and identical finite-valued discrete random variables, saying that

if Z1, Z2, . . . are independent random variables, in the sense
that for all k ≥ 2 and all numbers r,

P (Zk ≤ r |Z1 = z1, . . . , Zk−1 = zk−1 ) = P (Z1 ≤ r)

regardless of the precise values z1, . . . , zk−1, then for each δ > 0,
as n gets large

P
(

|n−1
n
∑

i=1

c(Zi)− E(c(Z1))| ≥ δ
)

−→ 0 (3.17)

where, in terms of the finite set S of possible values of Z ,

E(c(Z1)) =
∑

z∈S
c(z)P (Z1 = z) (3.18)

Although we do not give any further proof here, it is a fact that the same
Law of Large Numbers given in equation (3.17) continues to hold if the
definition of independent sequences of random variables Zi is suitably gen-
eralized, as long as either

Zi are discrete with infinitely many possible values defining a
set S, and the expectation is as given in equation (3.18) above
whenever the function c(z) is such that

∑

z∈S
|c(z)|P (Z1 = z) < ∞

or

the independent random variables Zi are continuous, all with
the same density f(t) such that P (q ≤ Z1 ≤ r) =

∫ r

q
f(t) dt,

and expectation is defined by

E(c(Z1)) =

∫ ∞

−∞
c(t) f(t) dt (3.19)
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whenever the function c(t) is such that
∫ ∞

−∞
|c(t)| f(t) dt < ∞

All of this serves to indicate that there really is no choice in coming
up with an appropriate definition of expectations of cost-functions defined in
terms of random variables Z, whether discrete or continuous. For the rest of
these lectures, and more generally in applications of probability within actu-
arial science, we are interested in evaluating expectations of various functions
of random variables related to the contingencies and uncertain duration of
life. Many of these expectations concern superpositions of random amounts
to be paid out after random durations. The following rules for the manipula-
tion of expectations arising in such superpositions considerably simplify the
calculations. Assume throughout the following that all payments and times
which are not certain are functions of a single lifetime random variable T .

(1). If a payment consists of a nonrandom multiple (e.g., face-amount
F ) times a random amount c(T ), then the expectation of the payment is
the product of F and the expectation of c(T ):

Discrete case: E(Fc(T )) =
∑

t

F c(t)P (T = t)

= F
∑

t

c(t)P (T = t) = F · E(c(T ))

Continuous case: E(Fc(T )) =

∫

F c(t)f(t) dt = F

∫

c(t)f(t) dt = F ·E(c(T ))

(2). If a payment consists of the sum of two separate random payments
c1(T ), c2(T ) (which may occur at different times, taken into account by
treating both terms ck(T ) as present values as of the same time), then the
overall payment has expectation which is the sum of the expectations of the
separate payments:

Discrete case: E(c1(T ) + c2(T )) =
∑

t

(c1(t) + c2(t))P (T = t)

=
∑

t

c1(t)P (T = t) +
∑

t

c2(t)P (T = t) = E(c1(T )) + E(c2(T ))
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Continuous case: E(c1(T ) + c2(T )) =

∫

(c1(t) + c2(t)) f(t) dt

=

∫

c1(t) f(t) dt+

∫

c2(t) f(t) dt = E(c1(T )) + E(c2(T ))

Thus, if an uncertain payment under an insurance-related contract, based
upon a continuous lifetime variable T with density fT , occurs only if
a ≤ T < b and in that case consists of a payment of a fixed amount F
occurring at a fixed time h, then the expected present value under a fixed
nonrandom interest-rate i with v = (1 + i)−1, becomes by rule (1) above,

E(vh F I[a≤T<b]) = vh F E(I[a≤T<b])

where the indicator-notation I[a≤T<b] denotes a random quantity which is
1 when the condition [a ≤ T < b] is satisfied and is 0 otherwise. Since
an indicator random variable has the two possible outcomes {0, 1} like the
coin-toss variables εi above, we conclude that E(I[a≤T<b]) = P (a ≤ T <

b) =
∫ b

a
fT (t) dt, and the expected present value above is

E(vh F I[a≤T<b]) = vh F

∫ b

a

fT (t) dt

3.5 Some Special Integrals

While actuaries ordinarily do not allow themselves to represent real life-
table survival distributions by simple finite-parameter families of theoretical
distributions (for the good reason that they never approximate the real large-
sample life-table data well enough), it is important for the student to be
conversant with several integrals which would arise by substituting some of
the theoretical models into formulas for various net single premiums and
expected lifetimes.

Consider first the Gamma functions and integrals arising in connection
with Gamma survival distributions. The Gamma function Γ(α) is defined
by

Γ(α) =

∫ ∞

0

xα−1 e−x dx , α > 0
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This integral is easily checked to be equal to 1 when α = 1, giving
the total probability for an exponentially distributed random variable, i.e., a
lifetime with constant force-of-mortality 1. For α = 2, the integral is the
expected value of such a unit-exponential random variable, and it is a stan-
dard integration-by-parts exercise to check that it too is 1. More generally,
integration by parts in the Gamma integral with u = xα and dv = e−x dx
immediately yields the famous recursion relation for the Gamma integral,
first derived by Euler, and valid for all α > 0 :

Γ(α+ 1) =

∫ ∞

0

xα e−x dx =
(

−xα e−x
)

∣

∣

∣

∞

0
+

∫ ∞

0

αxα−1 e−x dx = α · Γ(α)

This relation, applied inductively, shows that for all positive integers n,

Γ(n+ 1) = n · (n− 1) · · · 2 · Γ(1) = n!

The only other simple-to-derive formula explicitly giving values for (non-
integer) values of the Gamma function is Γ( 1

2
) =

√
π, obtained as follows:

Γ(
1

2
) =

∫ ∞

0

x−1/2 e−xdx =

∫ ∞

0

e−z
2/2
√
2 dz

Here we have made the integral substitution x = z2/2, x−1/2 dx =
√
2 dz.

The last integral can be given by symmetry as

1√
2

∫ ∞

−∞
e−z

2/2 dz =
√
π

where the last equality is equivalent to the fact (proved in most calculus
texts as an exercise in double integration using change of variable to polar
coordinates) that the standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞
e−z

2/2 dz (3.20)

is a bona-fide distribution function with limit equal to 1 as x→ ∞.

One of the integrals which arises in calculating expected remaining life-
times for Weibull-distributed variables is aGamma integral, after integration-
by-parts and a change-of-variable. Recall that the Weibull density with pa-
rameters λ, γ is

f(t) = λ γ tγ−1 e−λ t
γ

, t > 0
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so that S(x) = exp(−λxγ). The expected remaining life for a Weibull-
distributed life aged x is calculated, via an integration by parts with u =
t− x and dv = f(t)dt = −S ′(t)dt, as

∫ ∞

x

(t− x)
f(t)

S(x)
dt =

1

S(x)

[

− (t− x) e−λt
γ
∣

∣

∣

∞

x
+

∫ ∞

x

e−λt
γ

dt
]

The first term in square brackets evaluates to 0 at the endpoints, and the
second term can be re-expressed via the change-of-variable w = λ tγ , to
give, in the Weibull example,

E(T − x |T ≥ x) = eλx
γ 1

γ
λ−1/γ

∫ ∞

λxγ
w(1/γ)−1 e−w dw

= Γ(
1

γ
) eλx

γ 1

γ
λ−1/γ

(

1−G1/γ(λxγ)
)

where we denote by Gα(z) the Gamma distribution function with shape
parameter α,

Gα(z) =
1

Γ(α)

∫ z

0

vα−1 e−v dv

and the integral on the right-hand side is called the incomplete Gamma func-
tion. Values of Gα(z) can be found either in published tables which
are now quite dated, or among the standard functions of many mathe-
matical/statistical computer packages, such as Mathematica, Matlab, or
Splus. One particular case of these integrals, the case α = 1/2 , can be re-
cast in terms of the standard normal distribution function Φ(·). We change
variables by v = y2/2 to obtain for z ≥ 0,

G1/2(z) =
1

Γ(1/2)

∫ z

0

v−1/2 e−v dv =
1√
π

∫

√
2z

0

√
2 e−y

2/2 dy

=

√

2

π
·
√
2π · (Φ(

√
2z)− Φ(0)) = 2Φ(

√
2z)− 1

One further expected-lifetime calculation with a common type of distri-
bution gives results which simplify dramatically and become amenable to
numerical calculation. Suppose that the lifetime random variable T is as-
sumed lognormally distributed with parameters m, σ2. Then the expected
remaining lifetime of a life aged x is

E(T − x |T ≥ x ) =
1

S(x)

∫ ∞

x

t
d

dt
Φ(

log(t)− log(m)

σ
) dt − x
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Now change variables by y = (log(t) − log(m))/σ = log(t/m)/σ, so that
t = meσy, and define in particular

x′ =
log(x)− log(m)

σ

Recalling that Φ′(z) = exp(−z2/2)/
√
2π , we find

E(T − x |T ≥ x ) =
1

1− Φ(x′)

∫ ∞

x′

m√
2π

eσy−y
2/2 dy

The integral simplifies after completing the square σy− y2/2 = σ2/2− (y−
σ)2/2 in the exponent of the integrand and changing variables by z = y−σ.
The result is:

E(T − x |T ≥ x ) =
meσ

2/2

1− Φ(x′)
(1− Φ(x′ − σ))

3.6 Exercise Set 3

(1). Show that: ∂
∂x tpx = tpx · (µx − µx+t) .

(2). For a certain value of x, it is known that tqx = kt over the time-
interval t ∈ [0, 3], where k is a constant. Express µx+2 as a function of
k.

(3). Suppose that an individual aged 20 has random lifetime Z with
continuous density function

fZ(t) = 0.02 (t− 20) e−(t−20)
2/100 , t > 20

(a) If this individual has a contract with your company that you must
pay his heirs $106 · (1.4 − Z/50) on the date of his death between ages 20
and 70, then what is the expected payment ?

(b) If the value of the death-payment described in (a) should properly be
discounted by the factor exp(−0.08(Z − 20)) (i.e. by the effective interest
rate of e.08−1 per year) to calculate the present value of the payment, then
what is the expected present value of the insurance contract ?
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Hint for both parts: After a change of variables, the integral in (a) can be
evaluated in terms of incomplete Gamma integrals

∫∞
c

sα−1 e−s ds, where
the complete Gamma integrals (for c=0) are known to yield the Gamma
function Γ(α) = (α − 1)!, for integer α > 0. Also: Γ(α + 1) = αΓ(α)
for all real > 0, and Γ(1/2) =

√
π .

(4). Suppose that a life-table mortality pattern is this: from ages 20 through
60, twice as many lives die in each 5-year period as in the previous five-year
period. Find the probability that a life aged 20 will die between exact ages 40
and 50. If the force of mortality can be assumed constant over each five-year
age period (20-24, 25-29, etc.), and if you are told that l60/l20 = 0.8, then
find the probability that a life aged 20 will survive at least until exact age
48.0 .

(5). Obtain an expression for µx if lx = k sx wx2
gc

x
, where k, s, w, g, c

are positive constants.

(6). Show that:
∫∞
0

lx+t µx+t dt = lx .

(7). A man wishes to accumulate $50, 000 in a fund at the end of 20 years.
If he deposits $1000 in the fund at the end of each of the first 10 years and
$1000+x in the fund at the end of each of the second 10 years, then find x
to the nearest dollar, where the fund earns an effective interest rate of 6% .

(8). Express in terms of annuity-functions a
(m)
Ne the present value of an

annuity of $100 per month paid the first year, $200 per month for the second
year, up to $1000 per month the tenth year. Find the numerical value of the
present value if the effective annual interest rate is 7% .

(9). Find upper bounds for the following Binomial probabilities, and com-
pare them with the exact values calculated via computer (e.g., using a spread-
sheet or exact mathematical function such as pbinom in Splus) :

(a). The probability that in Bernoulli trials with success-probability
0.4, the number of successes lies outside the (inclusive) range [364, 446].

(b). The probability that of 1650 lives aged exactly 45, for whom

20p45 = 0.72, no more than 1075 survive to retire at age 65.

(10). If the force of mortality governing a cohort life-table is such that

µt =
2

1 + t
+

2

100− t
for real t , 0 < t < 100
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then find the number of deaths which will be expected to occur between ages
1 and 4, given that the radix l0 of the life-table is 10, 000.

(11). Find the expected present value at 5% APR of an investment whose
proceeds will with probability 1/2 be a payment of $10, 000 in exactly 5
years, and with the remaining probability 1/2 will be a payment of $20, 000
in exactly 10 years.
Hint: calculate the respective present values V1, V2 of the payments in each
of the two events with probability 0.5, and find the expected value of a discrete
random variable which has values V1 or V2 with probabilities 0.5 each.
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3.7 Worked Examples

Example 1. Assume that a cohort life-table population satisfies l0 = 104

and

dx =







200 for 0 ≤ x ≤ 14
100 for 15 ≤ x ≤ 48
240 for 49 ≤ x ≤ 63

(a) Suppose that an insurer is to pay an amount $100 ·(64−X) (without
regard to interest or present values related to the time-deferral of the payment)
for a newborn in the life-table population, if X denotes the attained integer
age at death. What is the expected amount to be paid ?

(b) Find the expectation requested in (a) if the insurance is purchased for
a life currently aged exactly 10 .

(c) Find the expected present value at 4% interest of a payment of $1000
to be made at the end of the year of death of a life currently aged exactly 20.

The first task is to develop an expression for survival function and density
governing the cohort life-table population. Since the numbers of deaths are
constant over intervals of years, the survival function is piecewise linear, and
the life-distribution is piecewise uniform because the the density is piecewise
constant. Specifically for this example, at integer values y,

ly =







10000− 200y for 0 ≤ y ≤ 15
7000− 100(y − 15) for 16 ≤ y ≤ 49
3600− 240(y − 49) for 50 ≤ y ≤ 64

It follows that the terminal age for this population is ω = 64 for this
population, and S(y) = 1 − 0.02 y for 0 ≤ y ≤ 15, 0.85 − 0.01 y for
15 ≤ y ≤ 49, and 1.536− .024 y for 49 ≤ y ≤ 64. Alternatively, extending
the function S linearly, we have the survival density f(y) = −S ′(y) = 0.02
on [0, 15), = 0.01 on [15, 49), and = 0.024 on [49, 64].

Now the expectation in (a) can be written in terms of the random lifetime
variable with density f as

∫ 15

0

0.02 · 100 · (64− [y]) dy +

∫ 49

15

0.01 · 100 · (64− [y]) dy
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+

∫ 64

49

0.024 · 100 · (64− [y]) dy

The integral has been written as a sum of three integrals over different ranges
because the analytical form of the density f in the expectation-formula
∫

g(y)f(y)dy is different on the three different intervals. In addition, observe
that the integrand (the function g(y) = 100(64− [y]) of the random lifetime
Y whose expectation we are seeking) itself takes a different analytical form
on successive one-year age intervals. Therefore the integral just displayed can
immediately be seen to agree with the summation formula for the expectation
of the function 100(64−X) for the integer-valued random variable X whose
probability mass function is given by

P (X = k) = dk/l0

The formula is

E(g(Y )) = E(100(64−X)) =
14
∑

k=0

0.02 · 100 · (64− k) +

48
∑

k=15

0.01 · 100 · (64− k) +
63
∑

k=49

0.024 · 100 · (64− k)

Thus the solution to (a) is given (after the change-of-variable j = 64 − k),
by

2.4
15
∑

j=1

j +
49
∑

j=16

j + 2
64
∑

j=50

j

The displayed expressions can be summed either by a calculator program or
by means of the easily-checked formula

∑n
j=1 j = j(j + 1)/2 to give the

numerical answer $3103 .

The method in part (b) is very similar to that in part (a), except that
we are dealing with conditional probabilities of lifetimes given to be at least
10 years long. So the summations now begin with k = 10, or alterna-
tively end with j = 64 − k = 54, and the denominators of the conditional
probabilities P (X = k|X ≥ 10) are l10 = 8000. The expectation in (b)
then becomes

14
∑

k=10

200

8000
·100 · (64−k) +

48
∑

k=15

100

8000
·100 · (64−k) +

63
∑

k=49

240

8000
·100 · (64−k)
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which works out to the numerical value

3.0
15
∑

1

j + 1.25
49
∑

16

j + 2.5
54
∑

50

j = $2391.25

Finally, we find the expectation in (c) as a summation beginning at k =
20 for a function 1000 · (1.04)−X+19 of the random variable X with
conditional probability distribution P (X = k|X ≥ 20) = dk/l20 for k ≥ 20.
(Note that the function 1.04−X+19 is the present value of a payment of 1
at the end of the year of death, because the end of the age- X year for an
individual currently at the 20th birthday is X − 19 years away.) Since
l20 = 6500, the answer to part (c) is

1000
{

48
∑

k=20

100

6500
(1.04)19−k +

63
∑

k=49

240

6500
(1.04)19−k

}

= 1000
( 1

65

1− 1.04−29

0.04
+

24

650
1.04−29

1− (1.04)−15

0.04

)

= 392.92

Example 2. Find the change in the expected lifetime of a cohort life-table
population governed by survival function S(x) = 1− (x/ω) for 0 ≤ x ≤ ω
if ω = 80 and

(a) the force of mortality µ(y) is multiplied by 0.9 at all exact ages
y ≥ 40, or

(b) the force of mortality µ(y) is decreased by the constant amount 0.1
at all ages y ≥ 40.

The force of mortality here is

µ(y) = − d

dy
ln(1− y/80) =

1

80− y

So multiplying it by 0.9 at ages over 40 changes leaves unaffected the
density of 1/80 for ages less than 40, and for ages y over 40 changes
the density from f(y) = 1/80 to

f ∗(y) = − d

dy

(

S(40) exp(−0.9
∫ y

40

(80− z)−1 dz)
)
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= − d

dy

(

0.5 e0.9 ln((80−y)/40)
)

= −0.5 d

dy

(

80− y

40

)0.9

=
0.9

80
(2− y/40)−0.1

Thus the expected lifetime changes from
∫ 80

0
(y/80) dy = 40 to

∫ 40

0

(y/80) dy +

∫ 80

40

y
0.9

80
(2− y/40)−0.1 dy

Using the change of variable z = 2 − y/40 in the last integral gives the
expected lifetime = 10 + .45(80/.9− 40/1.9) = 40.53.

Example 3. Suppose that you have available to you two investment possi-
bilities, into each of which you are being asked to commit $5000. The first
investment is a risk-free bond (or bank savings-account) which returns com-
pound interest of 5% for a 10-year period. The second is a ‘junk bond’
which has probability 0.6 of paying 11% compound interest and returning
your principal after 10 years, probability 0.3 of paying yearly interest at
11% for 5 years and then returning your principal of $5000 at the end
of the 10th year with no further interest payments, and probability 0.1
of paying yearly interest for 3 years at 11% and then defaulting, paying
no more interest and not returning the principal. Suppose further that the
going rate of interest with respect to which present values should properly
be calculated for the next 10 years will either be 4.5% or 7.5%, each
with probability 0.5. Also assume that the events governing the junk bond’s
paying or defaulting are independent of the true interest rate’s being 4.5%
versus 7.5% for the next 10 years. Which investment provides the better
expected return in terms of current (time-0) dollars ?

There are six relevant events, named and displayed along with their prob-
abilities in the following table, corresponding to the possible combinations
of true interest rate (Low versus High) and payment scenarios for the junk
bond (Full payment, Partial interest payments with return of principal, and
Default after 3 years’ interest payments):
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Event Name Description Probability

A1 Low ∩ Full 0.30
A2 Low ∩ Partial 0.15
A3 Low ∩ Default 0.05
A4 High ∩ Full 0.30
A5 High ∩ Partial 0.15
A6 High ∩ Default 0.05

Note that because of independence (first defined in Section 1.1), the prob-
abilities of intersected events are calculated as the products of the separate
probabilities, e.g.,

P (A2) = P (Low) · P (Partial) = (0.5) · (0.30) = 0.15

Now, under each of the events A1, A2, A3, the present value of the first
investment (the risk-free bond) is

5000
{

10
∑

k=1

0.05 (1.045)−k + (1.045)−10
}

= 5197.82

On each of the events A4, A5, A6, the present value of the first investment
is

5000
{

10
∑

k=1

0.05 (1.075)−k + (1.075)−10
}

= 4141.99

Thus, since

P (Low) = P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3) = 0.5

the overall expected present value of the first investment is

0.5 · (5197.82 + 4141.99) = 4669.90

Turning to the second investment (the junk bond), denoting by PV the
present value considered as a random variable, we have

E(PV |A1)/5000 = 0.11
10
∑

k=1

(1.045)−k + (1.045)−10 = 1.51433
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E(PV |A4)/5000 = 0.11
10
∑

k=1

(1.075)−k + (1.075)−10 = 1.24024

E(PV |A2)/5000 = 0.11
5
∑

k=1

(1.045)−k + (1.045)−10 = 1.12683

E(PV |A5)/5000 = 0.11
5
∑

k=1

(1.075)−k + (1.075)−10 = 0.93024

E(PV |A3)/5000 = 0.11
3
∑

k=1

(1.045)−k = 0.302386

E(PV |A6)/5000 = 0.11
3
∑

k=1

(1.075)−k = 0.286058

Therefore, we conclude that the overall expected present value E(PV ) of
the second investment is

6
∑

i=1

E(PV · IAi
) =

6
∑

i=1

E(PV |Ai)P (Ai) = 5000 · (1.16435) = 5821.77

So, although the first-investment is ‘risk-free’, it does not keep up with infla-
tion in the sense that its present value is not even as large as its starting value.
The second investment, risky as it is, nevertheless beats inflation (i.e., the
expected present value of the accumulation after 10 years is greater than the
initial face value of $5000) although with probability P (Default) = 0.10
the investor may be so unfortunate as to emerge (in present value terms)
with only 30% of his initial capital.
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3.8 Useful Formulas from Chapter 3

kpx = px px+1 px+2 · · · px+k−1 , k ≥ 1 integer

p. 61

k/mpx =
k−1
∏

j=0

1/mpx+j/m , k ≥ 1 integer

p. 61

(i) Piecewise Unif.. S(k+t) = tS(k+1)+(1−t)S(k) , k integer , t ∈ [0, 1]

p. 64

(ii) Piecewise Const. µ(y) lnS(k+t) = t lnS(k+1)+(1−t) lnS(k) , k integer

p. 64

(iii) Balducci assump.
1

S(k + t)
=

t

S(k + 1)
+

1− t

S(k)
, k integer

p. 64

tpk =
S(k)− t(S(k + 1)− S(k))

S(k)
= 1− t qk under (i)

p. 66

tpk =
S(k + t)

S(x)
=
(

e−µ(k)
)t

= (1− qk)
t under (ii)

p. 66

tpk =
S(k + t)

S(k + 1)

S(k + 1)

S(k)
=

1− qk
1− (1− t)qk

under (iii)
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p. 66

Binomial(N, p) probability P (X = k) =

(

N

k

)

pk (1− p)N−k

p. 68

Discrete r.v. Expectation E(c(Z)) =
m
∑

i=1

c(zi) pZ(zi)

p. 77

Γ(α) =

∫ ∞

0

xα−1 e−x dx

p. 82

Φ(x) =
1√
2π

∫ x

−∞
e−z

2/2 dz

p. 82



Chapter 4

Expected Present Values of
Insurance Contracts

We are now ready to draw together the main strands of the development so
far: (i) expectations of discrete and continuous random variables defined as
functions of a life-table waiting time T until death, and (ii) discounting of
future payment (streams) based on interest-rate assumptions. The approach
is first to define the contractual terms of and discuss relations between the
major sorts of insurance, endowment and life annuity contracts, and next to
use interest theory to define the present value of the contractual payment
stream by the insurer as a nonrandom function of the random individual
lifetime T . In each case, this leads to a formula for the expected present value
of the payout by the insurer, an amount called the net single premium
or net single risk premium of the contract because it is the single cash
payment by the insured at the beginning of the insurance period which would
exactly compensate for the average of the future payments which the insurer
will have to make.

The details of the further mathematical discussion fall into two parts:
first, the specification of formulas in terms of cohort life-table quantities for
net single premiums of insurances and annuities which pay only at whole-year
intervals; and second, the application of the various survival assumptions con-
cerning interpolation between whole years of age, to obtain the corresponding
formulas for insurances and annuities which have m payment times per year.
We close this Chapter with a discussion of instantaneous-payment insurance,

95
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continuous-payment annuity, and mean-residual-life formulas, all of which
involve continuous-time expectation integrals. We also relate these expecta-
tions with their m-payment-per-year discrete analogues, and compare the
corresponding integral and summation formulas.

Similar and parallel discussions can be found in the Life Contingencies
book of Jordan (1967) and the Actuarial Mathematics book of Bowers et
al. (1986). The approach here differs in unifying concepts by discussing
together all of the different contracts, first in the whole-year case, next under
interpolation assumptions in the m-times-per-year case, and finally in the
instantaneous case.

4.1 Expected Present Values of Payments

Throughout the Chapter and from now on, it is helpful to distinguish no-
tationally the expectations relating to present values of life insurances and
annuities for a life aged x. Instead of the notation E(g(T ) |T ≥ x) for
expectations of functions of life-length random variables, we define

Ex ( g(T ) ) = E(g(T ) | T ≥ x)

The expectations formulas can then be written in terms of the residual-
lifetime variable S = T − x (or the change-of-variable s = t − x) as
follows:

Ex ( g(T ) ) =

∫ ∞

x

g(t)
f(t)

S(x)
dt =

∫ ∞

x

g(t)
∂

∂t

(

− S(t)

S(x)

)

dt

=

∫ ∞

0

g(s+ x)
∂

∂s
(− spx) ds =

∫ ∞

0

g(s+ x)µ(s+ x) spx ds

4.1.1 Types of Insurance & Life Annuity Contracts

There are three types of contracts to consider: insurance, life annuities, and
endowments. More complicated kinds of contracts — which we do not discuss
in detail — can be obtained by combining (superposing or subtracting) these
in various ways. A further possibility, which we address in Chapter 10, is
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to restrict payments to some further contingency (e.g., death-benefits only
under specified cause-of-death).

In what follows, we adopt several uniform notations and assumptions.
Let x denote the initial age of the holder of the insurance, life annuity,
or endowment contract, and assume for convenience that the contract is
initiated on the holder’s birthday. Fix a nonrandom effective (i.e., APR)
interest rate i , and retain the notation v = (1 + i)−1, together with the
other notations previously discussed for annuities of nonrandom duration.
Next, denote by m the number of payment-periods per year, all times being
measured from the date of policy initiation. Thus, for given m, insurance
will pay off at the end of the fraction 1/m of a year during which death
occurs, and life-annuities pay regularly m times per year until the annuitant
dies. The term or duration n of the contract will always be assumed to
be an integer multiple of 1/m. Note that policy durations are all measured
from policy initiation, and therefore are exactly x smaller than the exact
age of the policyholder at termination.

The random exact age at which the policyholder dies is denoted by T ,
and all of the contracts under discussion have the property that T is the
only random variable upon which either the amount or time of payment can
depend. We assume further that the payment amount depends on the time
T of death only through the attained age Tm measured in multiples of 1/m
year. As before, the survival function of T is denoted S(t), and the density
either f(t). The probabilities of the various possible occurrences under the
policy are therefore calculated using the conditional probability distribution
of T given that T ≥ x, which has density f(t)/S(x) at all times t ≥ x.
Define from the random variable T the related discrete random variable

Tm =
[Tm]

m
= age at beginning of

1

m
th of year of death

which for integer initial age x is equal to x+ k/m whenever x+ k/m ≤
T < x + (k + 1)/m. Observe that the probability mass function of this
random variable is given by

P (Tm = x+
k

m

∣

∣

∣
T ≥ x) = P (

k

m
≤ T − x <

k + 1

m

∣

∣

∣
T ≥ x)

=
1

S(x)

[

S(x+
k

m
)− S(x+

k + 1

m
)

]

= k/mpx − (k+1)/mpx
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= P (T ≥ x+
k

m

∣

∣

∣
T ≥ x) · P (T < x+

k + 1

m

∣

∣

∣
T ≥ x+

k

m
) (4.1)

= k/mpx · 1/mqx+k/m

As has been mentioned previously, a key issue in understanding the special
nature of life insurances and annuities with multiple payment periods is to
understand how to calculate or interpolate these probabilities from the prob-
abilities jpy (for integers j, y) which can be deduced or estimated from
life-tables.

An Insurance contract is an agreement to pay a face amount — perhaps
modified by a specified function of the time until death — if the insured, a
life aged x, dies at any time during a specified period, the term of the policy,
with payment to be made at the end of the 1/m year within which the death
occurs. Usually the payment will simply be the face amount F (0), but for
example in decreasing term policies the payment will be F (0) · (1− k−1

nm
) if

death occurs within the kth successive fraction 1/m year of the policy,
where n is the term. (The insurance is said to be a whole-life policy if
n =∞, and a term insurance otherwise.) The general form of this contract,
for a specified term n ≤ ∞, payment-amount function F (·), and number
m of possible payment-periods per year, is to

pay F (T − x) at time Tm − x+ 1
m

following policy initiation,
if death occurs at T between x and x+ n.

The present value of the insurance company’s payment under the contract is
evidently

{

F (T − x) vTm−x+1/m if x ≤ T < x+ n
0 otherwise

(4.2)

The simplest and most common case of this contract and formula arise
when the face-amount F (0) is the constant amount paid whenever a death
within the term occurs. Then the payment is F (0), with present value
F (0) v−x+([mT ]+1)/m, if x ≤ T < x+ n, and both the payment and present
value are 0 otherwise. In this case, with F (0) ≡ 1, the net single premium
has the standard notation A(m)1x:ne. In the further special case where m = 1,
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the superscript m is dropped, and the net single premium is denoted A1x:ne.
Similarly, when the insurance is whole-life (n = ∞), the subscript n and
bracket ne are dropped.

A Life Annuity contract is an agreement to pay a scheduled payment to
the policyholder at every interval 1/m of a year while the annuitant is alive,
up to a maximum number of nm payments. Again the payment amounts are
ordinarily constant, but in principle any nonrandom time-dependent schedule
of payments F (k/m) can be used, where F (s) is a fixed function and s
ranges over multiples of 1/m. In this general setting, the life annuity
contract requires the insurer to

pay an amount F (k/m) at each time k/m ≤ T − x, up to a
maximum of nm payments.

To avoid ambiguity, we adopt the convention that in the finite-term life
annuities, either F (0) = 0 or F (n) = 0. As in the case of annuities certain
(i.e., the nonrandom annuities discussed within the theory of interest), we
refer to life annuities with first payment at time 0 as (life) annuities-due
and to those with first payment at time 1/m (and therefore last payment
at time n in the case of a finite term n over which the annuitant survives)
as (life) annuities-immediate. The present value of the insurance company’s
payment under the life annuity contract is

(Tm−x)m
∑

k=0

F (k/m) vk/m (4.3)

Here the situation is definitely simpler in the case where the payment
amounts F (k/m) are level or constant, for then the life-annuity-due payment
stream becomes an annuity-due certain (the kind discussed previously under
the Theory of Interest) as soon as the random variable T is fixed. Indeed,
if we replace F (k/m) by 1/m for k = 0, 1, . . . , nm − 1, and by 0 for

larger indices k, then the present value in equation (4.3) is ä
(m)

min(Tm+1/m, n)e
,

and its expected present value (= net single premium) is denoted ä
(m)
x:ne .

In the case of temporary life annuities-immediate, which have payments
commencing at time 1/m and continuing at intervals 1/m either until
death or for a total of nm payments, the expected-present value notation
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is a
(m)
x:ne . However, unlike the case of annuities-certain (i.e., nonrandom-

duration annuities), one cannot simply multiply the present value of the life
annuity-due for fixed T by the discount-factor v1/m in order to obtain the
corresponding present value for the life annuity-immediate with the same
term n. The difference arises because the payment streams (for the life
annuity-due deferred 1/m year and the life-annuity immediate) end at the
same time rather than with the same number of payments when death occurs
before time n. The correct conversion-formula is obtained by treating the
life annuity-immediate of term n as paying, in all circumstances, a present
value of 1/m (equal to the cash payment at policy initiation) less than
the life annuity-due with term n + 1/m. Taking expectations leads to the
formula

a
(m)
x:ne = ä

(m)

x:n+1/me
− 1/m (4.4)

In both types of life annuities, the superscripts (m) are dropped from the
net single premium notations when m = 1, and the subscript n is dropped
when n =∞.

The third major type of insurance contract is the Endowment, which
pays a contractual face amount F (0) at the end of n policy years if the
policyholder initially aged x survives to age x + n. This contract is the
simplest, since neither the amount nor the time of payment is uncertain. The
pure endowment contract commits the insurer to

pay an amount F (0) at time n if T ≥ x+ n

The present value of the pure endowment contract payment is

F (0) vn if T ≥ x+ n, 0 otherwise (4.5)

The net single premium or expected present value for a pure endowment
contract with face amount F (0) = 1 is denoted A 1

x:ne or nEx and is
evidently equal to

A 1
x:ne = nEx = vn npx (4.6)

The other contract frequently referred to in beginning actuarial texts is
the Endowment Insurance, which for a life aged x and term n is simply
the sum of the pure endowment and the term insurance, both with term n
and the same face amount 1. Here the contract calls for the insurer to
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pay $1 at time Tm + 1
m

if T < n, and at time n if T ≥ n

The present value of this contract has the form vn on the event [T ≥ n]
and the form vTm−x+1/m on the complementary event [T < n]. Note that
Tm + 1/m ≤ n whenever T < n. Thus, in both cases, the present value is
given by

vmin(Tm−x+1/m, n) (4.7)

The expected present value of the unit endowment insurance is denoted A
(m)
x:ne .

Observe (for example in equation (4.10) below) that the notations for the
net single premium of the term insurance and of the pure endowment are
intended to be mnemonic, respectively denoting the parts of the endowment
insurance determined by the expiration of life — and therefore positioning
the superscript 1 above the x — and by the expiration of the fixed term,
with the superscript 1 in the latter case positioned above the n.

Another example of an insurance contract which does not need separate
treatment, because it is built up simply from the contracts already described,
is the n-year deferred insurance. This policy pays a constant face amount at
the end of the time-interval 1/m of death, but only if death occurs after time
n , i.e., after age x+n for a new policyholder aged precisely x. When the
face amount is 1, the contractual payout is precisely the difference between
the unit whole-life insurance and the n-year unit term insurance, and the
formula for the net single premium is

A(m)x − A(m)1x:ne (4.8)

Since this insurance pays a benefit only if the insured survives at least
n years, it can alternatively be viewed as an endowment with benefit equal
to a whole life insurance to the insured after n years (then aged x+ n) if
the insured lives that long. With this interpretation, the n-year deferred
insurance has net single premium = nEx · Ax+n. This expected present
value must therefore be equal to (4.8), providing the identity:

A(m)x − A(m)1x:ne = vn npx · Ax+n (4.9)
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4.1.2 Formal Relations among Net Single Premiums

In this subsection, we collect a few useful identities connecting the different
types of contracts, which hold without regard to particular life-table interpo-
lation assumptions. The first, which we have already seen, is the definition of
endowment insurance as the superposition of a constant-face-amount term
insurance with a pure endowment of the same face amount and term. In
terms of net single premiums, this identity is

A
(m)
x:ne = A(m)1x:ne + A(m) 1x:ne (4.10)

The other important identity concerns the relation between expected
present values of endowment insurances and life annuities. The great gener-
ality of the identity arises from the fact that, for a fixed value of the random
lifetime T , the present value of the life annuity-due payout coincides with
the annuity-due certain. The unit term-n life annuity-due payout is then
given by

ä
(m)

min(Tm−x+1/m, n)e
=

1− vmin(Tm−x+1/m, n)

d(m)

The key idea is that the unit life annuity-due has present value which is a
simple linear function of the present value vmin(Tm−x+1/m, n) of the unit en-
dowment insurance. Taking expectations (over values of the random variable
T , conditionally given T ≥ x) in the present value formula, and substituting

A
(m)
x:ne as expectation of (4.7), then yields:

ä
(m)
x:ne = Ex

(1− vmin(Tm−x+1/m, n)

d(m)

)

=
1− A

(m)
x:ne

d(m)
(4.11)

where recall that Ex( · ) denotes the conditional expectation E( · |T ≥ x).
A more common and algebraically equivalent form of the identity (4.11) is

d(m) ä
(m)
x:ne + A

(m)
x:ne = 1 (4.12)

To obtain a corresponding identity relating net single premiums for life
annuities-immediate to those of endowment insurances, we appeal to the
conversion-formula (4.4), yielding

a
(m)
x:ne = ä

(m)

x:n+1/me
− 1

m
=

1− A
(m)

x:n+1/me

d(m)
− 1

m
=

1

i(m)
− 1

d(m)
A
(m)

x:n+1/me
(4.13)
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and

d(m) a
(m)
x:ne + A

(m)

x:n+1/me
=

d(m)

i(m)
= v1/m (4.14)

In these formulas, we have made use of the definition

m

d(m)
= (1 +

i(m)

m
)
/

(
i(m)

m
)

leading to the simplifications

m

d(m)
=

m

i(m)
+ 1 ,

i(m)

d(m)
= 1 +

i(m)

m
= v−1/m

4.1.3 Formulas for Net Single Premiums

This subsection collects the expectation-formulas for the insurance, annuity,
and endowment contracts defined above. Throughout this Section, the same
conventions as before are in force (integer x and n, fixed m, i, and
conditional survival function tpx ) .

First, the expectation of the present value (4.2) of the random term in-
surance payment (with level face value F (0) ≡ 1) is

A1x:ne = Ex
(

vTm−x+1/m
)

=
nm−1
∑

k=0

v(k+1)/m k/mpx 1/mqx+k/m (4.15)

The index k in the summation formula given here denotes the multiple of
1/m beginning the interval [k/m, (k + 1)/m) within which the policy age
T − x at death is to lie. The summation itself is simply the weighted sum,
over all indices k such that k/m < n, of the present values v(k+1)/m

to be paid by the insurer in the event that the policy age at death falls in
[k/m, (k+1)/m) multiplied by the probability, given in formula (4.1), that
this event occurs.

Next, to figure the expected present value of the life annuity-due with
term n, note that payments of 1/m occur at all policy ages k/m, k =
0, . . . , nm−1, for which T −x ≥ k/m. Therefore, since the present values
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of these payments are (1/m) vk/m and the payment at k/m is made with
probability k/mpx ,

ä
(m)
x:ne = Ex

(

nm−1
∑

k=0

1

m
vk/m I[T−x≥k/m]

)

=
1

m

nm−1
∑

k=0

vk/m k/mpx (4.16)

Finally the pure endowment has present value

nEx = Ex
(

vn I[T−x≥n]
)

= vn xpn (4.17)

4.1.4 Expected Present Values for m = 1

It is clear that for the general insurance and life annuity payable at whole-
year intervals ( m = 1 ), with payment amounts determined solely by the
whole-year age [T ] at death, the net single premiums are given by discrete-
random-variable expectation formulas based upon the present values (4.2)
and (4.3). Indeed, since the events {[T ] ≥ x} and {T ≥ x} are identical
for integers x, the discrete random variable [T ] for a life aged x has
conditional probabilities given by

P ([T ] = x+ k |T ≥ x) = kpx − k+1px = kpx · qx+k
Therefore the expected present value of the term-n insurance paying F (k)
at time k+1 whenever death occurs at age T between x+k and x+k+1
(with k < n) is

E
(

v[T ]−x+1 F ([T ]− x) I[T≤x+n]

∣

∣

∣
T ≥ x

)

=
n−1
∑

k=0

F (k) vk+1 kpx qx+k

Here and from now on, for an event B depending on the random lifetime
T , the notation IB denotes the so-called indicator random variable which is
equal to 1 whenever T has a value such that the condition B is satisfied
and is equal to 0 otherwise. The corresponding life annuity which pays
F (k) at each k = 0, . . . , n at which the annuitant is alive has expected
present value

Ex
(

min(n, [T ]−x)
∑

k=0

vk F (k)
)

= Ex
(

n
∑

k=0

vk F (k) I[T≥x+k]

)

=
n
∑

k=0

vk F (k) kpx



4.1. EXPECTED PAYMENT VALUES 105

In other words, the payment of F (k) at time k is received only if the
annuitant is alive at that time and so contributes expected present value
equal to vk F (k) kpx. This makes the annuity equal to the superposition
of pure endowments of terms k = 0, 1, 2, . . . , n and respective face-amounts
F (k).

In the most important special case, where the non-zero face-amounts
F (k) are taken as constant, and for convenience are taken equal to 1 for
k = 0, . . . , n− 1 and equal to 0 otherwise, we obtain the useful formulas

A1x:ne =
n−1
∑

k=0

vk+1 kpx qx+k (4.18)

äx:ne =
n−1
∑

k=0

vk kpx (4.19)

A 1
x:ne = Ex

(

vn I[T−x≥n]

)

= vn npx (4.20)

Ax:ne =
∞
∑

k=0

vmin(n,k+1) kpx qx+k

=
n−1
∑

k=0

vk+1 (kpx − k+1px) + vn npx (4.21)

Two further manipulations which will complement this circle of ideas are
left as exercises for the interested reader: (i) first, to verify that formula
(4.19) gives the same answer as the formula Ex(äx:min([T ]−x+1, n)e) ; and
(ii) second, to sum by parts (collecting terms according to like subscripts k
of kpx in formula (4.21)) to obtain the equivalent expression

1 +
n−1
∑

k=0

(vk+1 − vk) kpx = 1− (1− v)
n−1
∑

k=0

vk kpx

The reader will observe that this final expression together with formula (4.19)
gives an alternative proof, for the case m = 1, of the identity (4.12).

Let us work out these formulas analytically in the special case where [T ]
has the Geometric(1− γ) distribution, i.e., where

P ([T ] = k) = P (k ≤ T < k + 1) = γk (1− γ) for k = 0, 1, . . .
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with γ a fixed constant parameter between 0 and 1. This would be
true if the force of mortality µ were constant at all ages, i.e., if T were
exponentially distributed with parameter µ, with f(t) = µ e−µt for t ≥ 0.
In that case, P (T ≥ k) = e−µk, and γ = P (T = k|T ≥ k) = 1−e−µ. Then

kpx qx+k = P ([T ] = x+ k |T ≥ x) = γk (1− γ) , npx = γn

so that

A 1
x:ne = (γv)n , A1x:ne =

n−1
∑

k=0

vk+1 γk (1− γ) = v(1− γ)
1− (γv)n

1− γv

Thus, for the case of interest rate i = 0.05 and γ = 0.97, corresponding
to expected lifetime = γ/(1− γ) = 32.33 years,

Ax:20e = (0.97/1.05)20 +
.03

1.05
· 1− (.97/1.05)20

(1− (.97/1.05)
= .503

which can be compared with Ax ≡ A1x:∞e =
.03
.08

= .375.

The formulas (4.18)-(4.21) are benchmarks in the sense that they repre-
sent a complete solution to the problem of determining net single premiums
without the need for interpolation of the life-table survival function between
integer ages. However the insurance, life-annuity, and endowment-insurance
contracts payable only at whole-year intervals are all slightly impractical
as insurance vehicles. In the next chapter, we approach the calculation of
net single premiums for the more realistic context of m-period-per-year in-
surances and life annuities, using only the standard cohort life-table data
collected by integer attained ages.

4.2 Continuous-Time Expectations

So far in this Chapter, all of the expectations considered have been associ-
ated with the discretized random lifetime variables [T ] and Tm = [mT ]/m.
However, Insurance and Annuity contracts can also be defined with re-
spectively instantaneous and continuous payments, as follows. First, an
instantaneous-payment or continuous insurance with face-value F
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is a contract which pays an amount F at the instant of death of the in-
sured. (In practice, this means that when the actual payment is made at
some later time, the amount paid is F together with interest compounded
from the instant of death.) As a function of the random lifetime T for the
insured life initially with exact integer age x, the present value of the amount
paid is F · vT−x for a whole-life insurance and F · vT−x · I[T<x+n] for an
n-year term insurance. The expected present values or net single premiums
on a life aged x are respectively denoted Ax for a whole-life contract and

A
1

x:ne for an n-year temporary insurance. The continuous life annuity is
a contract which provides continuous payments at rate 1 per unit time for
duration equal to the smaller of the remaining lifetime of the annuitant or
the term of n years. Here the present value of the contractual payments,
as a function of the exact age T at death for an annuitant initially of exact
integer age x, is amin(T−x, n)e where n is the (possibly infinite) duration of
the life annuity. Recall that

aKe =

∫ ∞

0

vt I[t≤K] dt =

∫ K

0

vt dt = (1− vK)/δ

is the present value of a continuous payment stream of 1 per unit time of
duration K units, where v = (1 + i)−1 and δ = ln(1 + i) .

The objective of this section is to develop and interpret formulas for these
continuous-time net single premiums, along with one further quantity which
has been defined as a continuous-time expectation of the lifetime variable T ,
namely the mean residual life (also called complete life expectancy)
ex = Ex(T − x) for a life aged x. The underlying general conditional
expectation formula (1.3) was already derived in Chapter 1, and we reproduce
it here in the form

Ex{ g(T ) } =
1

S(x)

∫ ∞

x

g(y) f(y) dy =

∫ ∞

0

g(x+ t)µ(x+ t) tpx dt (4.22)

We apply this formula directly for the three choices

g(y) = y − x , vy−x , or vy−x · I[y−x<n]

which respectively have the conditional Ex(·) expectations

ex , Ax , A
1

x:ne
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For easy reference, the integral formulas for these three cases are:

ex = Ex(T − x) =

∫ ∞

0

t µ(x+ t) tpx dt (4.23)

Ax = Ex(vT−x) =

∫ ∞

0

vt µ(x+ t) tpx dt (4.24)

A
1

x:ne = Ex

(

vT−x I[T−x≤n]
)

=

∫ n

0

vt−x µ(x+ t) tpx dt (4.25)

Next, we obtain two additional formulas, for continuous life annuities-due

ax and ax:ne

which correspond to Ex{g(T )} for the two choices

g(t) =

∫ ∞

0

vt I[t≤y−x] dt or

∫ n

0

vt I[t≤y−x] dt

After switching the order of the integrals and the conditional expectations,
and evaluating the conditional expectation of an indicator as a conditional
probability, in the form

Ex
(

I[t≤T−x]
)

= P (T ≥ x+ t |T ≥ x) = tpx

the resulting two equations become

ax = Ex
(∫ ∞

0

vt I[t≤T−x] dt

)

=

∫ ∞

0

vt tpx dt (4.26)

ax:ne = Ex
(∫ n

0

vt I[t≤T−x] dt

)

=

∫ n

0

vt tpx dt (4.27)

As might be expected, the continuous insurance and annuity contracts
have a close relationship to the corresponding contracts with m payment
periods per year for large m. Indeed, it is easy to see that the term insurance
net single premiums

A(m)1x:ne = Ex
(

vTm−x+1/m
)

approach the continuous insurance value (4.24) as a limit when m→∞. A
simple proof can be given because the payments at the end of the fraction
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1/m of year of death are at most 1/m years later than the continuous-
insurance payment at the instant of death, so that the following obvious
inequalities hold:

A
1

x:ne ≤ A(m)1x:ne ≤ v1/m A
1

x:ne (4.28)

Since the right-hand term in the inequality (4.28) obviously converges for
large m to the leftmost term, the middle term which is sandwiched in
between must converge to the same limit (4.25).

For the continuous annuity, (4.27) can be obtained as a limit of formulas
(4.16) using Riemann sums, as the number m of payments per year goes to
infinity, i.e.,

ax:ne = lim
m→∞

ä
(m)
x:ne = lim

m→∞

nm−1
∑

k=0

1

m
vk/m k/mpx =

∫ n

0

vt tpx ds

The final formula coincides with (4.27), according with the intuition that the
limit as m→∞ of the payment-stream which pays 1/m at intervals of time
1/m between 0 and Tm − x inclusive is the continuous payment-stream
which pays 1 per unit time throughout the policy-age interval [0, T − x).

Each of the expressions in formulas (4.23), (4.24), and (4.27) can be con-
trasted with a related approximate expectation for a function of the integer-
valued random variable [T ] (taking m = 1). First, alternative general
formulas are developed for the integrals by breaking the formulas down into
sums of integrals over integer-endpoint intervals and substituting the defini-
tion kpx/S(x+ k) = 1/S(x) :

Ex(g(T )) =
∞
∑

k=0

∫ x+k+1

x+k

g(y)
f(y)

S(x)
dy changing to z = y−x−k

=
∞
∑

k=0

kpx

∫ 1

0

g(x+ k + z)
f(x+ k + z)

S(x+ k)
dz (4.29)

Substituting into (4.29) the special function g(y) = y − x, leads to

ex =
∞
∑

k=0

kpx

{

k
S(x+ k)− S(x+ k + 1)

S(x+ k)
+

∫ 1

0

z
f(x+ k + z)

S(x+ k)
dz
}

(4.30)

Either of two assumptions between integer ages can be applied to simplify
the integrals:
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(a) (Uniform distribution of failures) f(y) = f(x + k) = S(x + k) −
S(x+ k + 1) for all y between x+ k, x+ k + 1 ;

(b) (Constant force of mortality) µ(y) = µ(x + k) for x + k ≤ y <
x+ k + 1, in which case 1− qx+k = exp(−µ(x+ k)).

In case (a), the last integral in (4.30) becomes
∫ 1

0

z
f(x+ k + z)

S(x+ k)
dz =

∫ 1

0

z
S(x+ k)− S(x+ k + 1)

S(x+ k)
dz =

1

2
qx+k

and in case (b), we obtain within (4.30)
∫ 1

0

z
f(x+ k + z)

S(x+ k)
dz =

∫ 1

0

z µ(x+ k) e−z µ(x+k) dz

which in turn is equal (after integration by parts) to

−e−µ(x+k) +
1− e−µ(x+k)

µ(x+ k)
≈ 1

2
µ(x+ k) ≈ 1

2
qx+k

where the last approximate equalities hold if the death rates are small. It
follows, exactly in the case (a) where failures are uniformly distributed within
integer-age intervals or approximately in case (b) when death rates are small,
that

ex =
∞
∑

k=0

(k +
1

2
) kpx qx+k =

∞
∑

k=0

k kpx qx+k +
1

2
(4.31)

The final summation in (4.31), called the curtate life expectancy

e̊x =
∞
∑

k=0

k kpx qx+k (4.32)

has an exact interpretation as the expected number of whole years of life
remaining to a life aged x. The behavior of and comparison between com-
plete and curtate life expectancies is explored numerically in subsection 4.2.1
below.

Return now to the general expression for Ex(g(T )), substituting g(y) =
vy−x but restricting attention to case (a):

A
1

x:ne = E
{

vT−x I[T<x+n]
}

=
n
∑

k=0

∫ x+k+1

x+k

vy−x
f(x+ k)

S(x)
dy
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=
n
∑

k=0

∫ x+k+1

x+k

vy−x
S(x+ k)− S(x+ k + 1)

S(x+ k)
kpx dy

=
n
∑

k=0

kpx qx+k

∫ 1

0

vk+t dt =
n
∑

k=0

kpx qx+k v
k+1 1− e−δ

vδ

where v = 1/(1+i) = e−δ, and δ is the force of interest. Since 1−e−δ = iv,
we have found in case (a) that

A
1

x:ne = A1x:ne · (i/δ) (4.33)

Finally, return to the formula (4.27) under case (b) to find

ax:ne =
n−1
∑

k=0

∫ k+1

k

vt tpx dt =
n−1
∑

k=0

∫ k+1

k

e−(δ+µ)t dt

=
n−1
∑

k=0

e−(δ+µ)k − e−(δ+µ)(k+1)

δ + µ
=

n−1
∑

k=0

vk kpx ·
1− e−(δ+µ)

δ + µ

Thus, in case (b) we have shown

ax:ne =
1− e−(δ+µ)n

δ + µ
= äx:ne ·

1− e−(δ+µ)

δ + µ
(4.34)

In the last two paragraphs, we have obtained formulas (4.33) and (4.34)
respectively under cases (a) and (b) relating net single premiums for con-
tinuous contracts to those of the corresponding single-payment-per-year con-
tracts. More elaborate relations will be given in the next Chapter between
net single premium formulas which do require interpolation-assumptions for
probabilities of survival to times between integer ages to formulas for m = 1,
which do not require such interpolation.

4.2.1 Numerical Calculations of Life Expectancies

Formulas (4.23) or (4.30) and (4.32) above respectively provide the complete
and curtate age-specific life expectancies, in terms respectively of survival



112 CHAPTER 4. EXPECTED PRESENT VALUES OF PAYMENTS

densities and life-table data. Formula (4.31) provides the actuarial approxi-
mation for complete life expectancy in terms of life-table data, based upon
interpolation-assumption (i) (Uniform mortality within year of age). In this
Section, we illustrate these formulas using the Illustrative simulated and ex-
trapolated life-table data of Table 1.1.

Life expectancy formulas necessarily involve life table data and/or sur-
vival distributions specified out to arbitrarily large ages. While life tables
may be based on large cohorts of insured for ages up to the seventies and even
eighties, beyond that they will be very sparse and very dependent on the par-
ticular small group(s) of aged individuals used in constructing the particular
table(s). On the other hand, the fraction of the cohort at moderate ages who
will survive past 90, say, is extremely small, so a reasonable extrapolation of
a well-established table out to age 80 or so may give sufficiently accurate life-
expectancy values at ages not exceeding 80. Life expectancies are in any case
forecasts based upon an implicit assumption of future mortality following ex-
actly the same pattern as recent past mortality. Life-expectancy calculations
necessarily ignore likely changes in living conditions and medical technology
which many who are currently alive will experience. Thus an assertion of
great accuracy for a particular method of calculation would be misplaced.

All of the numerical life-expectancy calculations produced for the Figure
of this Section are based on the extrapolation (2.9) of the illustrative life table
data from Table 1.1. According to that extrapolation, death-rates qx for
all ages 78 and greater are taken to grow exponentially, with log(qx/q78) =
(x − 78) ln(1.0885). This exponential behavior is approximately but not
precisely compatible with a Gompertz-form force-of-mortality function

µ(78 + t) = µ(78) ct

in light of the approximate equality µ(x) ≈ qx, an approximation which
progressively becomes less valid as the force of mortality gets larger. To see
this, note that under a Gompertz survival model,

µ(x) = Bcx , qx = 1− exp

(

−Bcx
c− 1

ln c

)

and with c = 1.0885 in our setting, (c− 1)/ ln c = 1.0436.

Since curtate life expectancy (4.32) relies directly on (extrapolated) life-
table data, its calculation is simplest and most easily interpreted. Figure 4.1
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presents, as plotted points, the age-specific curtate life expectancies for in-
teger ages x = 0, 1, . . . , 78. Since the complete life expectancy at each age
is larger than the curtate by exactly 1/2 under interpolation assumption
(a), we calculated for comparison the complete life expectancy at all (real-
number) ages, under assumption (b) of piecewise-constant force of mortality
within years of age. Under this assumption, by formula (3.11), mortality
within year of age (0 < t < 1) is tpx = (px)

t. Using formula (4.31) and
interpolation assumption (b), the exact formula for complete life expectancy
becomes

ex − e̊x =
∞
∑

k=0

kpx

{

qx+k + px+k ln(px+k)

− ln(px+k)

}

The complete life expectancies calculated from this formula were found to
exceed the curtate life expectancy by amounts ranging from 0.493 at ages
40 and below, down to 0.485 at age 78 and 0.348 at age 99. Thus there is
essentially no new information in the calculated complete life expectancies,
and they are not plotted.

The aspect of Figure 4.1 which is most startling to the intuition is the
large expected numbers of additional birthdays for individuals of advanced
ages. Moreover, the large life expectancies shown are comparable to actual
US male mortality circa 1959, so would be still larger today.

4.3 Exercise Set 4

(1). For each of the following three lifetime distributions, find (a) the
expected remaining lifetime for an individual aged 20, and (b) 7/12q40/q40.

(i) Weibull(.00634, 1.2), with S(t) = exp(−0.00634 t1.2),

(ii) Lognormal(log(50), 0.3252), with S(t) = 1−Φ((log(t)− log(50))/0.325),

(iii) Piecewise exponential with force of mortality given the constant value
µt = 0.015 for 20 < t ≤ 50, and µt = 0.03 for t ≥ 50. In these
integrals, you should be prepared to use integrations by parts, gamma function
values, tables of the normal distribution function Φ(x), and/or numerical
integrations via calculators or software.



114 CHAPTER 4. EXPECTED PRESENT VALUES OF PAYMENTS

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Expected number of additional whole years of life, by age

Age in years

C
ur

ta
te

 L
ife

 E
xp

ec
ta

nc
y

0 20 40 60 80

10
20

30
40

50
60

70

Figure 4.1: Curtate life expectancy e̊x as a function of age, calculated
from the simulated illustrative life table data of Table 1.1, with age-specific
death-rates qx extrapolated as indicated in formula (2.9).
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(2). (a) Find the expected present value, with respect to the constant
effective interest rate r = 0.07, of an insurance payment of $1000 to be
made at the instant of death of an individual who has just turned 40 and
whose remaining lifetime T − 40 = S is a continuous random variable with
density f(s) = 0.05 e−0.05 s , s > 0.

(b) Find the expected present value of the insurance payment in (a) if
the insurer is allowed to delay the payment to the end of the year in which
the individual dies. Should this answer be larger or smaller than the answer
in (a) ?

(3). If the individual in Problem 2 pays a life insurance premium P at
the beginning of each remaining year of his life (including this one), then
what is the expected total present value of all the premiums he pays before
his death ?

(4). Suppose that an individual has equal probability of dying within each
of the next 40 years, and is certain to die within this time, i.e., his age is x
and

kpx − k+1px = 0.025 for k = 0, 1, . . . , 39

Assume the fixed interest rate r = 0.06.

(a) Find the net single whole-life insurance premium Ax for this indi-
vidual.

(b) Find the net single premium for the term and endowment insurances
A1

x:20e
and A

x:30e
.

(5). Show that the expected whole number of years of remaining life for a
life aged x is given by

cx = E([T ]− x |T ≥ x) =
ω−x−1
∑

k=0

k kpx qx+k

and prove that this quantity as a function of integer age x satisfies the
recursion equation

cx = px (1 + cx+1)

(6). Show that the expected present value bx of an insurance of 1 payable
at the beginning of the year of death (or equivalently, payable at the end of
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the year of death along with interest from the beginning of that same year)
satisfies the recursion relation (4.35) above.

(7). Prove the identity (4.9) algebraically.

For the next two problems, consider a cohort life-table population for
which you know only that l70 = 10, 000, l75 = 7000, l80 = 3000, and l85 =
0, and that the distribution of death-times within 5-year age intervals is
uniform.

(8). Find (a) e̊75 and (b) the probability of an individual aged 70 in
this life-table population dying between ages 72.0 and 78.0.

(9). Find the probability of an individual aged 72 in this life-table popula-
tion dying between ages 75.0 and 83.0, if the assumption of uniform death-
times within 5-year intervals is replaced by:

(a) an assumption of constant force of mortality within 5-year age-
intervals;

(b) the Balducci assumption (of linearity of 1/S(t)) within 5-year age
intervals.

(10). Suppose that a population has survival probabilities governed at all
ages by the force of mortality

µt =























.01 for 0 ≤ t < 1

.002 for 1 ≤ t < 5

.001 for 5 ≤ t < 20

.004 for 20 ≤ t < 40

.0001 · t for 40 ≤ t

Then (a) find 30p10, and (b) find e̊50.

(11). Suppose that a population has survival probabilities governed at all
ages by the force of mortality

µt =







.01 for 0 ≤ t < 10

.1 for 10 ≤ t < 30
3/t for 30 ≤ t

Then (a) find 30p20 = the probability that an individual aged 20 survives
for at least 30 more years, and (b) find e̊30.
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(12). Assuming the same force of mortality as in the previous problem, find
e̊70 and A60 if i = 0.09.

(13). The force of mortality for impaired lives is three times the standard
force of mortality at all ages. The standard rates qx of mortality at ages 95,
96, and 97 are respectively 0.3, 0.4, and 0.5 . What is the probability that
an impaired life age 95 will live to age 98 ?

(14). You are given a survival function S(x) = (10−x)2/100 , 0 ≤ x ≤ 10.

(a) Calculate the average number of future years of life for an individual
who survives to age 1.

(b) Calculate the difference between the force of mortality at age 1, and
the probability that a life aged 1 dies before age 2.

(15). An n-year term life insurance policy to a life aged x provides
that if the insured dies within the n-year period an annuity-certain of yearly
payments of 10 will be paid to the beneficiary, with the first annuity payment
made on the policy-anniversary following death, and the last payment made

on the N th policy anniversary. Here 1 < n ≤ N are fixed integers. If
B(x, n,N) denotes the net single premium (= expected present value) for
this policy, and if mortality follows the law lx = C(ω − x)/ω for some
terminal integer age ω and constant C, then find a simplified expression
for B(x, n,N) in terms of interest-rate functions, ω, and the integers
x, n, N . Assume x+ n ≤ ω.

(16). The father of a newborn child purchases an endowment and insurance
contract with the following combination of benefits. The child is to receive

$100, 000 for college at her 18th birthday if she lives that long and $500, 000

at her 60th birthday if she lives that long, and the father as beneficiary is
to receive $200, 000 at the end of the year of the child’s death if the child
dies before age 18. Find expressions, both in actuarial notations and in
terms of v = 1/(1 + i) and of the survival probabilities kp0 for the child,
for the net single premium for this contract.
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4.4 Worked Examples

Example 1. Toy Life-Table (assuming uniform failures)

Consider the following life-table with only six equally-spaced ages. (That
is, assume l6 = 0.) Assume that the rate of interest i = .09, so that
v = 1/(1 + i) = 0.9174 and (1− e−δ)/δ = (1− v)/δ = 0.9582.

x Age-range lx dx ex Ax

0 0 – 0.99 1000 60 4.2 0.704
1 1 – 1.99 940 80 3.436 0.749
2 2 – 2.99 860 100 2.709 0.795
3 3 – 3.99 760 120 2.0 0.844
4 4 – 4.99 640 140 1.281 0.896
5 5 – 5.99 500 500 0.5 0.958

Using the data in this Table, and interest rate i = .09, we begin by cal-
culating the expected present values for simple contracts for term insurance,
annuity, and endowment. First, for a life aged 0, a term insurance with
payoff amount $1000 to age 3 has present value given by formula (4.18) as

1000A10:3e = 1000

{

0.917
60

1000
+ (0.917)2

80

1000
+ (0.917)3

100

1000

}

= 199.60

Second, for a life aged 2, a term annuity-due of $700 per year up to age
5 has present value computed from (4.19) to be

700 ä2:3e = 700

{

1 + 0.917
760

860
+ (0.917)2

640

860

}

= 1705.98

For the same life aged 2, the 3-year Endowment for $700 has present value

700A 1
0:3e = 700 · (0.9174)3 500

860
= 314.26

Thus we can also calculate (for the life aged 2) the present value of the
3-year annuity-immediate of $700 per year as

700 ·
(

ä2:3e − 1 + A 1
0:3e

)

= 1705.98− 700 + 314.26 = 1320.24
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We next apply and interpret the formulas of Section 4.2, together with
the observation that

jpx · qx+j =
lx+j
lx

· dx+j
lx+j

=
dx+j
lx

to show how the last two columns of the Table were computed. In particular,
by (4.31)

e2 =
100

860
· 0 + 120

860
· 1 + 140

860
· 2 + 500

860
· 3 + 1

2
=

1900

860
+ 0.5 = 2.709

Moreover: observe that cx =
∑5−x

k=0 k kpxqx+k satisfies the “recursion equa-
tion” cx = px (1 + cx+1) (cf. Exercise 5 above), with c5 = 0, from which
the ex column is easily computed by: ex = cx + 0.5.

Now apply the present value formula for conitunous insurance to find

Ax =
5−x
∑

k=0

kpx qx v
k 1− e−δ

δ
= 0.9582

5−x
∑

k=0

kpx qx v
k = 0.9582 bx

where bx is the expected present value of an insurance of 1 payable at the
beginning of the year of death (so that Ax = v bx ) and satisfies b5 = 1
together with the recursion-relation

bx =
5−x
∑

k=0

kpx qx v
k = px v bx+1 + qx (4.35)

(Proof of this recursion is Exercise 6 above.)

Example 2. Find a simplified expression in terms of actuarial exprected
present value notations for the net single premium of an insurance on a life
aged x, which pays F (k) = C än−ke if death occurs at any exact ages
between x + k and x + k + 1, for k = 0, 1, . . . , n − 1, and interpret the
result.

Let us begin with the interpretation: the beneficiary receives at the end
of the year of death a lump-sum equal in present value to a payment stream
of $C annually beginning at the end of the year of death and terminating

at the end of the nth policy year. This payment stream, if superposed upon
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an n-year life annuity-immediate with annual payments $C, would result
in a certain payment of $C at the end of policy years 1, 2, . . . , n. Thus
the expected present value in this example is given by

C ane − C ax:ne (4.36)

Next we re-work this example purely in terms of analytical formulas. By
formula (4.36), the net single premium in the example is equal to

n−1
∑

k=0

vk+1 kpx qx+k C än−k+1e = C

n−1
∑

k=0

vk+1 kpx qx+k
1− vn−k

d

=
C

d

{

n−1
∑

k=0

vk+1 kpx qx+k − vn+1
n−1
∑

k=0

(kpx − k+1px)

}

=
C

d

{

A1x:ne − vn+1 (1− npx)
}

=
C

d

{

Ax:ne − vn npx − vn+1 (1− npx)
}

and finally, by substituting expression (4.14) with m = 1 for Ax:ne , we
have

C

d

{

1− d äx:ne − (1− v) vn npx − vn+1
}

=
C

d

{

1− d (1 + ax:ne − vn npx) − d vn npx − vn+1
}

=
C

d

{

v − d ax:ne − vn+1
}

= C

{

1− vn

i
− ax:ne

}

= C {ane − ax:ne}

So the analytically derived answer agrees with the one intuitively arrived at
in formula (4.36).



4.5. USEFUL FORMULAS FROM CHAPTER 4 121

4.5 Useful Formulas from Chapter 4

Tm = [Tm]/m

p. 97

P (Tm = x+
k

m
| T ≥ x) = k/mpx − (k+1)/mpx = k/mpx · 1/mqx+k/m

p. 98

Term life annuity a
(m)
x:ne = ä

(m)

x:n+1/me
− 1/m

p. 100

Endowment A 1
x:ne = nEx = vn npx

p. 100

A(m)x − A(m)1x:ne = vn npx · Ax+n

p. 101

A
(m)
x:ne = A(m)1x:ne + A(m) 1x:ne = A(m)1x:ne +n Ex

p. 102

ä
(m)
x:ne = Ex

(1− vmin(Tm−x+1/m, n)

d(m)

)

=
1− A

(m)
x:ne

d(m)

p. 102

d(m) ä
(m)
x:ne + A

(m)
x:ne = 1

p. 102

A1x:ne = Ex
(

vTm−x+1/m
)

=
nm−1
∑

k=0

v(k+1)/m k/mpx 1/mqx+k/m

p. 103
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A1x:ne =
n−1
∑

k=0

vk+1 kpx qx+k

p. 105

äx:ne =
n−1
∑

k=0

vk kpx

p. 105

A 1
x:ne = Ex

(

vn I[T−x≥n]

)

= vn npx

p. 105

Ax:ne =
n−1
∑

k=0

vk+1 (kpx − k+1px) + vn npx

p. 105



Chapter 5

Premium Calculation

This Chapter treats the most important topics related to the calculation
of (risk) premiums for realistic insurance and annuity contracts. We be-
gin by considering at length net single premium formulas for insurance and
annuities, under each of three standard assumptions on interpolation of the
survival function between integer ages, when there are multiple payments per
year. One topic covered more rigorously here than elsewhere is the calculus-
based and numerical comparison between premiums under these slightly dif-
ferent interpolation assumptions, justifying the standard use of the simplest
of the interpolation assumptions, that deaths occur uniformly within whole
years of attained age. Next we introduce the idea of calculating level premi-
ums, setting up equations balancing the stream of level premium payments
coming in to an insurer with the payout under an insurance, endowment, or
annuity contract. Finally, we discuss single and level premium calculation
for insurance contracts where the death benefit is modified by (fractional)
premium amounts, either as refunds or as amounts still due. Here the is-
sue is first of all to write an exact balance equation, then load it appropri-
ately to take account of administrative expenses and the cushion required for
insurance-company profitability, and only then to approximate and obtain
the usual formulas.

123
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5.1 m-Payment Net Single Premiums

The objective in this section is to relate the formulas for net single premiums
for life insurance, life annuities, pure endowments and endowment insurances
in the case where there are multiple payment periods per year to the case
where there is just one. Of course, we must now make some interpolation
assumptions about within-year survival in order to do this, and we consider
the three main assumptions previously introduced: piecewise uniform failure
distribution (constant failure density within each year), piecewise exponen-
tial failure distribution (constant force of mortality within each year), and
Balducci assumption. As a practical matter, it usually makes relatively lit-
tle difference which of these is chosen, as we have seen in exercises and will
illustrate further in analytical approximations and numerical tabulations.
However, of the three assumptions, Balducci’s is least important practically,
because of the remark that the force of mortality it induces within years is
actually decreasing (the reciprocal of a linear function with positive slope),
since formula (3.9) gives it under that assumption as

µ(x+ t) = − d

dt
lnS(x+ t) =

qx
1− (1− t) qx

Thus the inclusion of the Balducci assumption here is for completeness only,
since it is a recurring topic for examination questions. However, we do not
give separate net single premium formulas for the Balducci case.

In order to display simple formulas, and emphasize closed-form relation-
ships between the net single premiums with and without multiple payments
per year, we adopt a further restriction throughout this Section, namely that
the duration n of the life insurance or annuity is an integer even though
m > 1. There is in principle no reason why all of the formulas cannot be
extended, one by one, to the case where n is assumed only to be an integer
multiple of 1/m, but the formulas are less simple that way.

5.1.1 Dependence Between Integer & Fractional Ages
at Death

One of the clearest ways to distinguish the three interpolation assumptions
is through the probabilistic relationship they impose between the greatest-
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integer [T ] or attained integer age at death and the fractional age T − [T ]
at death. The first of these is a discrete, nonnegative-integer-valued random
variable, and the second is a continuous random variable with a density on
the time-interval [0, 1). In general, the dependence between these random
variables can be summarized through the calculated joint probability

P ([T ] = x+ k, T − [T ] < t |T ≥ x) =

∫ x+k+t

x+k

f(y)

S(x)
dy = tqx+k kpx (5.1)

where k, x are integers and 0 ≤ t < 1. From this we deduce the following
formula (for k ≥ 0) by dividing the formula (5.1) for general t by the
corresponding formula at t = 1 :

P (T − [T ] ≤ t | [T ] = x+ k) =
tqx+k
qx+k

(5.2)

where we have used the fact that T − [T ] < 1 with certainty.

In case (i) from Section 3.2, with the density f assumed piecewise
constant, we already know that tqx+k = t qx+k, from which formula (5.2)
immediately implies

P (T − [T ] ≤ t | [T ] = x+ k) = t

In other words, given complete information about the age at death, the
fractional age at death is always uniformly distributed between 0, 1. Since
the conditional probability does not involve the age at death, we say under
the interpolation assumption (i) that the fractional age and whole-year age
at death are independent as random variables.

In case (ii), with piecewise constant force of mortality, we know that

tqx+k = 1 − tpx+k = 1 − e−µ(x+k) t

and it is no longer true that fractional and attained ages at death are inde-
pendent except in the very special (completely artificial) case where µ(x+k)
has the same constant value µ for all x, k. In the latter case, where T
is an exponential random variable, it is easy to check from (5.2) that

P (T − [T ] ≤ t | [T ] = x+ k) =
1− e−µt

1− e−µ
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In that case, T − [T ] is indeed independent of [T ] and has a truncated
exponential distribution on [0, 1), while [T ] has the Geometric(1 − e−µ)
distribution given, according to (5.1), by

P ([T ] = x+ k |T ≥ x) = (1− e−µ)(e−µ)k

In case (iii), under the Balducci assumption, formula (3.8) says that

1−tqx+t = (1 − t) qx, which leads to a special formula for (5.2) but not
a conclusion of conditional independence. The formula comes from the cal-
culation

(1− t) qx+k = (1−t)qx+k+t = 1− px+k

tpx+k

leading to

tqx+k = 1− tpx+k = 1− px+k
1− (1− t) qx+k

=
t qx+k

1− (1− t) qx+k

Thus Balducci implies via (5.2) that

P (T − [T ] ≤ t | [T ] = x+ k) =
t

1− (1− t) qx+k

5.1.2 Net Single Premium Formulas — Case (i)

In this setting, the formula (4.15) for insurance net single premium is simpler
than (4.16) for life annuities, because

j/mpx+k − (j+1)/mpx+k =
1

m
qx+k

Here and throughout the rest of this and the following two subsections,
x, k, j are integers and 0 ≤ j < m, and k + j

m
will index the possi-

ble values for the last multiple Tm − x of 1/m year of the policy age at
death. The formula for net single insurance premium becomes especially
simple when n is an integer, because the double sum over j and k factors
into the product of a sum of terms depending only on j and one depending
only on k :

A(m)1x:ne =
n−1
∑

k=0

m−1
∑

j=0

vk+(j+1)/m
1

m
qx+k kpx
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=

(

n−1
∑

k=0

vk+1 qx+k kpx

)

v−1+1/m

m

m−1
∑

j=0

vj/m = A1x:ne v
−1+1/m ä

(m)
1e

= A1x:ne v
−1+1/m 1− v

d(m)
=

i

i(m)
A1x:ne (5.3)

The corresponding formula for the case of non-integer n can clearly be
written down in a similar way, but does not bear such a simple relation to
the one-payment-per-year net single premium.

The formulas for life annuities should not be re-derived in this setting but
rather obtained using the general identity connecting endowment insurances
with life annuities. Recall that in the case of integer n the net single premium
for a pure n-year endowment does not depend upon m and is given by

A 1
x:ne = npx v

n

Thus we continue by displaying the net single premium for an endowment
insurance, related in the m-payment-period-per year case to the formula with
single end-of-year payments:

A
(m)
x:ne = A(m)1x:ne + A 1

x:ne =
i

i(m)
A1x:ne + npx v

n (5.4)

As a result of (4.11), we obtain the formula for net single premium of a
temporary life-annuity due:

ä
(m)
x:ne =

1− A
(m)
x:ne

d(m)
=

1

d(m)

[

1 − i

i(m)
A1x:ne − npx v

n
]

Re-expressing this formula in terms of annuities on the right-hand side, using
äx:ne = d−1 (1− vn npx − A1x:ne), immediately yields

ä
(m)
x:ne =

d i

d(m) i(m)
äx:ne +

(

1− i

i(m)

)

1− vn npx
d(m)

(5.5)

The last formula has the form that the life-annuity due with m payments
per year is a weighted linear combination of the life-annuity due with a single
payment per year, the n-year pure endowment, and a constant, where the
weights and constant depend only on interest rates and m but not on
survival probabilities:

ä
(m)
x:ne = α(m) äx:ne − β(m) (1 − npx v

n)

= α(m) äx:ne − β(m) + β(m)A 1
x:ne (5.6)
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Table 5.1: Values of α(m), β(m) for Selected m, i

i m= 2 3 4 6 12

0.03
α(m) 1.0001 1.0001 1.0001 1.0001 1.0001
β(m) 0.2537 0.3377 0.3796 0.4215 0.4633

0.05
α(m) 1.0002 1.0002 1.0002 1.0002 1.0002
β(m) 0.2562 0.3406 0.3827 0.4247 0.4665

0.07
α(m) 1.0003 1.0003 1.0004 1.0004 1.0004
β(m) 0.2586 0.3435 0.3858 0.4278 0.4697

0.08
α(m) 1.0004 1.0004 1.0005 1.0005 1.0005
β(m) 0.2598 0.3450 0.3873 0.4294 0.4713

0.10
α(m) 1.0006 1.0007 1.0007 1.0007 1.0008
β(m) 0.2622 0.3478 0.3902 0.4325 0.4745

Here the interest-rate related constants α(m), β(m) are given by

α(m) =
d i

d(m) i(m)
, β(m) =

i − i(m)

d(m) i(m)

Their values for some practically interesting values of m, i are given in
Table 5.1. Note that α(1) = 1, β(1) = 0, reflecting that ä

(m)
x:ne coincides

with äx:ne by definition when m = 1. The limiting case for i = 0 is given
in Exercises 6 and 7:

for i = 0 , m ≥ 1 , α(m) = 1 , β(m) =
m− 1

2m

Equations (5.3), (5.5), and (5.6) are useful because they summarize con-
cisely the modification needed for one-payment-per-year formulas (which
used only life-table and interest-rate-related quantities) to accommodate mul-
tiple payment-periods per year. Let us specialize them to cases where either
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the duration n, the number of payment-periods m, or both approach ∞.
Recall that failures continue to be assumed uniformly distributed within years
of age.

Consider first the case where the insurances and life-annuities are whole-
life, with n = ∞. The net single premium formulas for insurance and life
annuity due reduce to

A(m)x =
i

i(m)
Ax , ä(m)x = α(m) äx − β(m)

Next consider the case where n is again allowed to be finite, but where
m is taken to go to ∞, or in other words, the payments are taken to be
instantaneous. Recall that both i(m) and d(m) tend in the limit to the
force-of-interest δ, so that the limits of the constants α(m), β(m) are
respectively

α(∞) =
d i

δ2
, β(∞) =

i − δ

δ2

Recall also that the instantaneous-payment notations replace the superscripts
(m) by an overbar. The single-premium formulas for instantaneous-payment
insurance and life-annuities due become:

A
1

x:ne =
i

δ
A1x:ne , ax:ne =

d i

δ2
äx:ne −

i− δ

δ2
(1− vn npx)

5.1.3 Net Single Premium Formulas — Case (ii)

In this setting, where the force of mortality is constant within single years of
age, the formula for life-annuity net single premium is simpler than the one
for insurance, because for integers j, k ≥ 0,

k+j/mpx = kpx e
−jµx+k/m

Again restrict attention to the case where n is a positive integer, and
calculate from first principles (as in 4.16)

ä
(m)
x:ne =

n−1
∑

k=0

m−1
∑

j=0

1

m
vk+j/m j/mpx+k kpx (5.7)

=
n−1
∑

k=0

vk kpx

m−1
∑

j=0

1

m
(ve−µx+k)j/m =

n−1
∑

k=0

vk kpx
1− vpx+k

m(1− (vpx+k)1/m)



130 CHAPTER 5. PREMIUM CALCULATION

where we have used the fact that when force of mortality is constant within
years, px+k = e−µx+k . In order to compare this formula with equation (5.5)
established under the assumption of uniform distribution of deaths within
years of policy age, we apply the first-order Taylor series approximation
about 0 for formula (5.7) with respect to the death-rates qx+k inside
the denominator-expression 1 − (vpx+k)

1/m = 1 − (v − vqx+k)
1/m. (These

annual death-rates qx+k are actually small over a large range of ages for U.S.
life tables.) The final expression in (5.7) will be Taylor-approximated in a
slightly modified form: the numerator and denominator are both multiplied
by the factor 1− v1/m, and the term

(1− v1/m)/(1− (vpx+k)
1/m)

will be analyzed first. The first-order Taylor-series approximation about
z = 1 for the function (1− v1/m)/(1− (vz)1/m) is

1− v1/m

1− (vz)1/m
≈ 1− (1− z)

[v1/m (1− v1/m) z−1+1/m

m (1− (vz)1/m)2

]

z=1

= 1− (1− z)
v1/m

m (1− v1/m)
= 1 − 1− z

i(m)

Evaluating this Taylor-series approximation at z = px+k = 1 − qx+k then
yields

1− v1/m

1− (vpx+k)1/m
≈ 1 − qx+k

i(m)

Substituting this final approximate expression into equation (5.7), with
numerator and denominator both multiplied by 1 − v1/m, we find for
piecewise-constant force of mortality which is assumed small

ä
(m)
x:ne ≈

n−1
∑

k=0

vk kpx
1 − vpx+k
m(1− v1/m)

(1− qx+k/i
(m))

≈
n−1
∑

k=0

vk kpx
1

d(m)

{

1 − vpx+k −
1− v

i(m)
qx+k

}

(5.8)

where in the last line we have applied the identity m(1− v1/m) = d(m) and
discarded a quadratic term in qx+k within the large curly bracket.
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We are now close to our final objective: proving that the formulas (5.5)
and (5.6) of the previous subsection are in the present setting still valid as
approximate formulas. Indeed, we now prove that the final expression (5.8)
is precisely equal to the right-hand side of formula (5.6). The interest of
this result is that (5.6) applied to piecewise-uniform mortality (Case (i)),
while we are presently operating under the assumption of piecewise-constant
hazards (Case ii). The proof of our assertion requires us to apply simple
identities in several steps. First, observe that (5.8) is equal by definition to

1

d(m)

[

äx:ne − ax:ne − v−1
1− v

i(m)
A1x:ne

]

(5.9)

Second, apply the general formula for äx:ne as a sum to check the identity

äx:ne =
n−1
∑

k=0

vk kpx = 1 − vn npx + ax:ne (5.10)

and third, recall the identity

äx:ne =
1

d

(

1 − A1x:ne − vn npx

)

(5.11)

Substitute the identities (5.10) and (5.11) into expression (5.9) to re-express
the latter as

1

d(m)

[

1 − vn npx −
i

i(m)
(1− vn npx − d äx:ne)

]

=
d i

d(m)i(m)
äx:ne +

1

d(m)
(1 − vn npx) (1 −

i

i(m)
) (5.12)

The proof is completed by remarking that (5.12) coincides with expression
(5.6) in the previous subsection.

Since formulas for the insurance and life annuity net single premiums can
each be used to obtain the other when there are m payments per year, and
since in the case of integer n, the pure endowment single premium A 1

x:ne

does not depend upon m, it follows from the result of this section that all
of the formulas derived in the previous section for case (i) can be used as
approximate formulas (to first order in the death-rates qx+k) also in case
(ii).
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5.2 Approximate Formulas via Case(i)

The previous Section developed a Taylor-series justification for using the very
convenient net-single-premium formulas derived in case (i) (of uniform distri-
bution of deaths within whole years of age) to approximate the corresponding
formulas in case (ii) (constant force of mortality within whole years of age.
The approximation was derived as a first-order Taylor series, up to linear
terms in qx+k. However, some care is needed in interpreting the result,
because for this step of the approximation to be accurate, the year-by-year
death-rates qx+k must be small compared to the nominal rate of interest
i(m). While this may be roughly valid at ages 15 to 50, at least in developed
countries, this is definitely not the case, even roughly, at ages larger than
around 55.

Accordingly, it is interesting to compare numerically, under several as-
sumed death- and interest- rates, the individual terms A(m)1

x:k+1e
− A(m)1

x:ke

which arise as summands under the different interpolation assumptions. (Here
and throughout this Section, k is an integer.) We first recall the formulas for
cases (i) and (ii), and for completeness supply also the formula for case (iii)
(the Balducci interpolation assumption). Recall that Balducci’s assumption
was previously faulted both for complexity of premium formulas and lack
of realism, because of its consequence that the force of mortality decreases
within whole years of age. The following three formulas are exactly valid
under the interpolation assumptions of cases (i), (ii), and (iii) respectively.

A(m)1x:k+1e − A(m)1x:ke =
i

i(m)
vk+1 kpx · qx+k (5.13)

A(m)1x:k+1e − A(m)1x:ke = vk+1 kpx (1− p
1/m
x+k)

i+ qx+k

1 + (i(m)/m)− p
1/m
x+k

(5.14)

A(m)1x:k+1e − A(m)1x:ke = vk+1 kpx qx+k

m−1
∑

j=0

px+k v
−j/m

m (1− j+1
m

qx+k) (1− j
m

qx+k)

(5.15)

Formula (5.13) is an immediate consequence of the formula A(m)1x:ne =

i A1x:ne / i(m) derived in the previous section. To prove (5.14), assume (ii) and

calculate from first principles and the identities v−1/m = 1 + i(m)/m and
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px+k = exp(−µx+k) that

m−1
∑

j=0

vk+(j+1)/m kpx ( j/mpx+k − (j+1)/mpx+k)

= vk+1 kpx v
−1+1/m (1− e−µx+k/m)

m−1
∑

j=0

(v e−µx+k)j/m

= vk+1 kpx (1− e−µx+k/m)
1− v px+k

1− (vpx+k)1/m
· v−1

v−1/m

= vk+1 kpx (1− e−µx+k/m)
i + qx+k

1 + i(m)/m − p
1/m
x+k

Finally, for the Balducci case, (5.15) is established by calculating first

j/mpx+k =
px+k

1 − 1−j/mqx+k+j/m
=

px+k

1 − m−j
m

qx+k

Then the left-hand side of (5.15) is equal to

m−1
∑

j=0

vk+(j+1)/m kpx ( j/mpx+k − (j+1)/mpx+k)

= vk+1 kpx qx+k v
−1+1/m

m−1
∑

j=0

px+k v
j/m

m (1− m−j
m

qx+k) (1− m−j−1
m

qx+k)

which is seen to be equal to the right-hand side of (5.15) after the change of
summation-index j ′ = m− j − 1.

Formulas (5.13), (5.14), and (5.15) are progressively more complicated,
and it would be very desirable to stop with the first one if the choice of
interpolation assumption actually made no difference. In preparing the fol-
lowing Table, the ratios both of formulas (5.14)/(5.13) and of (5.15)/(5.13)
were calculated for a range of possible death-rates q = qx+k, interest-rates
i, and payment-periods-per-year m. We do not tabulate the results for
the ratios (5.14)/(5.13) because these ratios were equal to 1 to three decimal
places except in the following cases: the ratio was 1.001 when i ranged
from 0.05 to 0.12 and q = 0.15 or when i was .12 or .15 and q was .12,
achieving a value of 1.002 only in the cases where q = i = 0.15, m ≥ 4.
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Such remarkable correspondence between the net single premium formulas
in cases (i), (ii) was by no means guaranteed by the previous Taylor series
calculation, and is made only somewhat less surprising by the remark that
the ratio of formulas (5.14)/(5.13) is smooth in both parameters qx+k, i and
exactly equal to 1 when either of these parameters is 0.

The Table shows a bit more variety in the ratios of (5.15)/(5.13), showing
in part why the Balducci assumption is not much used in practice, but also
showing that for a large range of ages and interest rates it also gives correct
answers within 1 or 2 %. Here also there are many cases where the Balducci
formula (5.15) agrees extremely closely with the usual actuarial (case (i))
formula (5.13). This also can be partially justified through the observation
(a small exercise for the reader) that the ratio of the right-hand sides of
formulas (5.15) divided by (5.13) are identical in either of the two limiting
cases where i = 0 or where qx+k = 0. The Table shows that the deviations
from 1 of the ratio (5.15) divided by (5.13) are controlled by the parameter
m and the interest rate, with the death-rate much less important within the
broad range of values commonly encountered.

5.3 Net Level (Risk) Premiums

The general principle previously enunciated regarding equivalence of two dif-
ferent (certain) payment-streams if their present values are equal, has the
following extension to the case of uncertain (time-of-death-dependent) pay-
ment streams: two such payment streams are equivalent (in the sense of
having equal ‘risk premiums’) if their expected present values are equal. This
definition makes sense if each such equivalence is regarded as the matching
of random income and payout for the insurer with respect to each of a large
number of independent (and identical) policies. Then the Law of Large
Numbers has the interpretation that the actual random net payout minus
income for the aggregate of the policies per policy is with very high prob-
ability very close (percentagewise) to the mathematical expectation of the
difference between the single-policy payout and income. That is why, from
a pure-risk perspective, before allowing for administrative expenses and the
‘loading’ or cushion which an insurer needs to maintain a very tiny proba-
bility of going bankrupt after starting with a large but fixed fund of reserve
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Table 5.2: Ratios of Values (5.15)/(5.13)

qx+k i m= 2 m= 4 m= 12
.002 .03 1.015 1.007 1.002
.006 .03 1.015 1.007 1.002
.02 .03 1.015 1.008 1.003
.06 .03 1.015 1.008 1.003
.15 .03 1.015 1.008 1.003

.002 .05 1.025 1.012 1.004

.006 .05 1.025 1.012 1.004
.02 .05 1.025 1.012 1.004
.06 .05 1.025 1.013 1.005
.15 .05 1.026 1.014 1.005

.002 .07 1.034 1.017 1.006

.006 .07 1.034 1.017 1.006
.02 .07 1.035 1.017 1.006
.06 .07 1.035 1.018 1.006
.15 .07 1.036 1.019 1.007

.002 .10 1.049 1.024 1.008

.006 .10 1.049 1.024 1.008
.02 .10 1.049 1.024 1.008
.06 .10 1.050 1.025 1.009
.15 .10 1.051 1.027 1.011

.002 .12 1.058 1.029 1.010

.006 .12 1.058 1.029 1.010
.02 .12 1.059 1.029 1.010
.06 .12 1.059 1.030 1.011
.15 .12 1.061 1.032 1.013

.002 .15 1.072 1.036 1.012

.006 .15 1.072 1.036 1.012
.02 .15 1.073 1.036 1.012
.06 .15 1.074 1.037 1.013
.15 .15 1.075 1.039 1.016
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capital, this expected difference should be set equal to 0 in figuring premi-
ums. The resulting rule for calculation of the premium amount P which
must multiply the unit amount in a specified payment pattern is as follows:

P = Expected present value of life insurance, annuity, or endow-
ment contract proceeds divided by the expected present value of
a unit amount paid regularly, according to the specified payment
pattern, until death or expiration of term.

5.4 Benefits Involving Fractional Premiums

The general principle for calculating risk premiums sets up a balance be-
tween expected payout by an insurer and expected payment stream received
as premiums. In the simplest case of level payment streams, the insurer re-
ceives a life-annuity due with level premium P , and pays out according
to the terms of the insurance product purchased, say a term insurance. If
the insurance purchased pays only at the end of the year of death, but the
premium payments are made m times per year, then the balance equation
becomes

A1x:ne = P · m ä
(m)
x:ne

for which the solution P is called the level risk premium for a term insurance.
The reader should distinguish this premium from the level premium payable

m times yearly for an insurance which pays at the end of the (1/m)th year
of death. In the latter case, where the number of payment periods per year
for the premium agrees with that for the insurance, the balance equation is

A(m)1x:ne = P · m ä
(m)
x:ne

In standard actuarial notations for premiums, not given here, level premiums
are annualized (which would result in the removal of a factor m from the
right-hand sides of the last two equations).

Two other applications of the balancing-equation principle can be made
in calculating level premiums for insurances which either (a) deduct the
additional premium payments for the remainder of the year of death from
the insurance proceeds, or (b) refund a pro-rata share of the premium for
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the portion of the 1/m year of death from the instant of death to the
end of the 1/m year of death. Insurance contracts with provision (a) are
called insurances with installment premiums: the meaning of this term is
that the insurer views the full year’s premium as due at the beginning of the
year, but that for the convenience of the insured, payments are allowed to be
made in installments at m regularly spaced times in the year. Insurances
with provision (b) are said to have apportionable refund of premium, with
the implication that premiums are understood to cover only the period of
the year during which the insured is alive . First in case (a), the expected
amount paid out by the insurer, if each level premium payment is P and
the face amount of the policy is F (0), is equal to

F (0)A(m)1x:ne −
n−1
∑

k=0

m−1
∑

j=0

vk+(j+1)/m k+j/mpx · 1/mqx+k+j/m (m− 1− j)P

and the exact balance equation is obtained by setting this equal to the ex-
pected amount paid in, which is again P m ä

(m)
x:ne . Under the interpolation

assumption of case (i), using the same reasoning which previously led to the
simplified formulas in that case, this balance equation becomes

F (0)A(m)1x:ne − A1x:ne

P

m

m−1
∑

j=0

v−(m−j−1)/m (m− j − 1) = P m ä
(m)
x:ne (5.16)

Although one could base an exact calculation of P on this equation, a further
standard approximation leads to a simpler formula. If the term (m− j − 1)
is replaced in the final sum by its average over j, or by m−1 ∑m−1

j=0 (m −
j− 1) = m−1 (m− 1)m/2 = (m− 1)/2, we obtain the installment premium
formula

P =
F (0)A(m)1x:ne

mä
(m)
x:ne + m−1

2
A(m)1x:ne

and this formula could be related using previous formulas derived in Section
5.1 to the insurance and annuity net single premiums with only one payment
period per year.

In the case of the apportionable return of premium, the only assumption
usually considered is that of case (i), that the fraction of a single premium
payment which will be returned is on average 1/2 regardless of which of
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the 1/m fractions of the year contains the instant of death. The balance
equation is then very simple:

A(m)1x:ne (F (0) +
1

2
P ) = P m ä

(m)
x:ne (5.17)

and this equation has the straightforward solution

P =
F (0)A(m)1x:ne

m ä
(m)
x:ne − 1

2
A(m)1x:ne

It remains only to remark what is the effect of loading for administrative
expenses and profit on insurance premium calculation. If all amounts paid
out by the insurer were equally loaded (i.e., multiplied) by the factor 1 +
L, then formula (5.17) would involve the loading in the second term of
the denominator, but this is apparently not the usual practice. In both
the apportionable refund and installment premium contracts, as well as the
insurance contracts which do not modify proceeds by premium fractions, it is
apparently the practice to load the level premiums P directly by the factor
1+L, which can easily be seen to be equivalent to inflating the face-amount
F (0) in the balance-formulas by this factor.

5.5 Exercise Set 5

(1). Show from first principles that for all integers x, n, and all fixed
interest-rates and life-distributions

ax:ne = äx:ne − 1 + vn npx

(2). Show from first principles that for all integers x, and all fixed interest-
rates and life-distributions

Ax = v äx − ax

Show further that this relation is obtained by taking the expectation on both
sides of an identity in terms of present values of payment-streams, an identity
whoch holds for each value of (the greatest integer [T ] less than or equal
to) the exact-age-at-death random variable T .
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(3). Using the same idea as in problem (2), show that (for all x, n, interest
rates, and life-distributions)

A1x:ne = v äx:ne − ax:ne

(4). Suppose that a life aged x (precisely, where x is an integer) has
the survival probabilities px+k = 0.98 for k = 0, 1, , . . . , 9. Suppose that
he wants to purchase a term insurance which will pay $30,000 at the end of
the quarter-year of death if he dies within the first five years, and will pay
$10,000 (also at the end of the quarter-year of death) if he dies between exact
ages 5, 10. In both parts (a), (b) of the problem, assume that the interest
rate is fixed at 5%, and assume wherever necessary that the individual’s
distribution of death-time is uniform within each whole year of age.

(a) Find the net single premium of the insurance contract described.

(b) Suppose that the individual purchasing the insurance described
wants to pay level premiums semi-annually, beginning immediately. Find
the amount of each semi-annual payment.

(5). Re-do problem (4) assuming in place of the uniform distribution of age
at death that the insured individual has constant force of mortality within
each whole year of age. Give your numerical answers to at least 6 significant
figures so that you can compare the exact numerical answers in these two
problems.

(6). Using the exact expression for the interest-rate functions i(m), d(m)

respectively as functions of i and d, expand these functions in Taylor
series about 0 up to quadratic terms. Use the resulting expressions to
approximate the coefficients α(m), β(m) which were derived in the Chapter.
Hence justify the so-called traditional approximation

ä(m)x ≈ äx −
m− 1

2m

(7). Justify the ‘traditional approximation’ (the displayed formula in Exer-
cise 6) as an exact formula in the case (i) in the limit i → 0, by filling in
the details of the following argument.

No matter which policy-year is the year of death of the annuitant, the
policy with m = 1 (and expected present value äx) pays 1 at the beginning
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of that year while the policy with m > 1 pays amounts 1/m at the beginning
of each 1/m’th year in which the annuitant is alive. Thus, the annuity with
one payment per years pays more than the annuity with m > 1 by an absolute
amount 1−(Tm− [T ]+1/m). Under assumption (i), Tm− [T ] is a discrete
random variable taking on the possible values 0, 1, . . . , (m−1)/m each with
probability 1/m. Disregard the interest and present-value discounting on the
excess amount 1− (Tm − [T ])/m paid by the m-payment-per year annuity,
and show that it is exactly (m− 1)/2m.

(8). Give an exact formula for the error of the ‘traditional approximation’
given in the previous problem, in terms of m, the constant interest rate i (or
v = (1+ i)−1), and the constant force µ of mortality, when the lifetime T
is assumed to be distributed precisely as an Exponential(µ) random variable.

(9). Show that the ratio of formulas (5.14)/(5.13) is 1 whenever either
qx+k or i is set equal to 0.

(10). Show that the ratio of formulas (5.15)/(5.13) is 1 whenever either
qx+k or i is set equal to 0.

(11). For a temporary life annuity on a life aged 57, with benefits deferred
for three years, you are given that µx = 0.04 is constant, δ = .06, that
premiums are paid continuously (with m =∞) only for the first two years,
at rate P per year, and that the annuity benefits are payable at beginnings
of years according to the following schedule:

Year 0 1 2 3 4 5 6 7 8+
Benefit 0 0 0 10 8 6 4 2 0

(a) In terms of P , calculate the expected present value of the premiums
paid.

(b) Using the equivalence principle, calculate P numerically.

(12). You are given that (i) q60 = 0.3, q61 = 0.4, (ii) f denotes the
probability that a life aged 60 will die between ages 60.5 and 61.5 under the
assumption of uniform distribution of deaths within whole years of age, and
(iii) g denotes the probability that a life aged 60 will die between ages
60.5 and 61.5 under the Balducci assumption. Calculate 10, 000 · (g − f)
numerically, with accuracy to the nearest whole number.
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(13). You are given that S(40) = 0.500, S(41) = 0.475, i = 0.06, A41 =
0.54, and that deaths are uniformly distributed over each year of age. Find
A40 exactly.

(14). If a mortality table follows Gompertz’ law (with exponent c), prove
that

µx = Ax

/

a′x

where Ax is calculated at interest rate i while a′x is calculated at a rate
of interest i′ = 1+i

c
− 1.

(15). You are given that i = 0.10, qx = 0.05, and qx+1 = 0.08, and that

deaths are uniformly distributed over each year of age. Calculate A
1

x:2e .

(16). A special life insurance policy to a life aged x provides that if death
occurs at any time within 15 years, then the only benefit is the return of
premiums with interest compounded to the end of the year of death. If death
occurs after 15 years, the benefit is $10, 000. In either case, the benefit
is paid at the end of the year of death. If the premiums for this policy are
to be paid yearly for only the first 5 years (starting at the time of issuance
of the policy), then find a simplified expression for the level annual pure-risk
premium for the policy, in terms of standard actuarial and interest functions.

(17). Prove that for every m, n, x, k, the net single premium for an
n-year term insurance for a life aged x, with benefit deferred for k years,
and payable at the end of the 1/m year of death is given by either side of
the identity

An+k m
xe − Ak m

xe = kEx An m
x+ke

First prove the identity algebraically; then give an alternative, intuitive ex-
planation of why the right-hand side represents the expected present value
of the same contingent payment stream as the left-hand side.
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5.6 Worked Examples

Overview of Premium Calculation for Single-Life Insurance & Annuities

Here is a schematic overview of the calculation of net single and level pre-
miums for life insurances and life annuities, based on life-table or theoretical
survival probabilities and constant interest or discount rate. We describe the
general situation and follow a specific case study/example throughout.

(I) First you will be given information about the constant assumed in-
terest rate in any of the equivalent forms i(m), d(m), or δ, and you should
immediately convert to find the effective annual interest rate (APR) i and
one-year discount factor v = 1/(1 + i). In our case-study, assume that

the force of interest δ is constant = − ln(0.94)

so that i = exp(δ) − 1 = (1/0.94) − 1 = 6/94, and v = 0.94. In terms
of this quantity, one immediately answers a question such as “what is the
present value of $1 at the end of 7 1

2
years ?” by: v7.5.

(II) Next you must be given either a theoretical survival function for
the random age at death of a life aged x, in any of the equivalent forms
S(x+ t), tpx, f(x+ t), or µ(x+ t), or a cohort-form life-table, e.g.,

l25 = 10,000 0p25 = 1.0
l26 = 9,726 1p25 = 0.9726
l27 = 9,443 2p25 = 0.9443
l28 = 9,137 3p25 = 0.9137
l29 = 8,818 4p25 = 0.8818
l30 = 8,504 5p25 = 0.8504

From such data, one calculates immediately that (for example) the probabil-
ity of dying at an odd attained-age between 25 and 30 inclusive is

(1− 0.9726) + (0.9443− 0.9137) + (0.8818− 0.8504) = 0.0894

The generally useful additional column to compute is:

q25 = 1− 1p25 = 0.0274, 1p25 − 2p25 = 0.0283, 2p25 − 3p25 = 0.0306
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3p25 − 4p25 = 0.0319, 4p25 − 5p25 = 0.0314

(III) In any problem, the terms of the life insurance or annuity to be
purchased will be specified, and you should re-express its present value in
terms of standard functions such as ax:ne or A1x:ne. For example, suppose a
life aged x purchases an endowment/annuity according to which he receives
$10,000 once a year starting at age x+1 until either death occurs or n years
have elapsed, and if he is alive at the end of n years he receives $15,000.
This contract is evidently a superposition of a n-year pure endowment with
face value $15,000 and a n-year temporary life annuity-immediate with
yearly payments $10,000. Thus, the expected present value (= net single
premium) is

10, 000 ax:ne + 15, 000 npx v
n

In our case-study example, this expected present value is

= 10000
(

0.94(0.9726) + 0.942(0.9443) + 0.943(0.9137) +

+ 0.944(0.8818) + 0.945(0.8504)
)

+ 15000(0.945 · 0.8504)
The annuity part of this net single premium is $38,201.09 , and the pure-
endowment part is $9,361.68 , for a total net single premium of $47,562.77

(IV) The final part of the premium computation problem is to specify
the type of payment stream with which the insured life intends to pay for
the contract whose expected present value has been figured in step (III). If
the payment is to be made at time 0 in one lump sum, then the net single
premium has already been figured and we are done. If the payments are to
be constant in amount (level premiums), once a year, to start immediately,
and to terminate at death or a maximum of n payments, then we divide
the net single premium by the expected present value of a unit life annuity
äx:ne. In general, to find the premium we divide the net single premium of
(III) by the expected present value of a unit amount paid according to the
desired premium-payment stream.

In the case-study example, consider two cases. The first is that the pur-
chaser aged x wishes to pay in two equal installments, one at time 0 and
one after 3 years (with the second payment to be made only if he is alive at
that time). The expected present value of a unit amount paid in this fashion
is

1 + v3 3px = 1 + (0.94)3 0.9137 = 1.7589
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Thus the premium amount to be paid at each payment time is

$ 47, 563 / 1.7589 = $27, 041

Alternatively, as a second example, suppose that the purchaser is in effect
taking out his annuity/endowment in the form of a loan, and agrees to (have
his estate) repay the loan unconditionally (i.e. without regard to the event
of his death) over a period of 29 years, with 25 equal payments to be made
every year beginning at the end of 5 years. In this case, no probabilities
are involved in valuing the payment stream, and the present value of such a
payment stream of unit amounts is

v4 a25e = (0.94)4 (.94/.06) (1− (0.94)25) = 9.627

In this setting, the amount of each of the equal payments must be

$ 47, 563 / 9.627 = $ 4941

(V) To complete the circle of ideas given here, let us re-do the case-
study calculation of paragraphs (III) to cover the case where the insurance
has quarterly instead of annual payments. Throughout, assume that deaths
within years of attained age are uniformly distributed (case(i)).

First, the expected present value to find becomes

10, 000 a
(4)
x:ne + 15, 000A 1

x:ne = 10000
(

ä
(4)
x:ne −

1

4
(1− vn npx)

)

+ 15000 vn npx

which by virtue of (5.6) is equal to

= 10000α(4) äx:ne − (1− vn npx) (10000β(4) + 2500) + 15000 vn npx

In the particular case with v = 0.94, x = 25, n = 5, and cohort life-table
given in (II), the net single premium for the endowment part of the contract
has exactly the same value $9361.68 as before, while the annuity part now
has the value

10000 (1.0002991) (1 + 0.94(0.9726) + 0.942(0.9443) + 0.943(0.9137)+

+0.944(0.8818)) − (6348.19) (1− 0.945(0.8504)) = 39586.31

Thus the combined present value is 48947.99: the increase of 1385 in value
arises mostly from the earlier annuity payments: consider that the interest
on the annuity value for one-half year is 38201(0.94−0.5 − 1) = 1200 .
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5.7 Useful Formulas from Chapter 5

P ([T ] = x+ k, T − [T ] < t |T ≥ x) =

∫ x+k+t

x+k

f(y)

S(x)
dy = tqx+k kpx

p. 125

P (T − [T ] ≤ t | [T ] = x+ k) =
tqx+k
qx+k

p. 125

A(m)1x:ne =
i

i(m)
A1x:ne under (i)

p. 127

ä
(m)
x:ne =

1− A
(m)
x:ne

d(m)
=

1

d(m)

[

1 − i

i(m)
A1x:ne − npx v

n
]

p. 127

ä
(m)
x:ne =

d i

d(m) i(m)
äx:ne +

(

1− i

i(m)

)

1− vn npx
d(m)

under (i)

p. 127

ä
(m)
x:ne = α(m) äx:ne − β(m) (1 − npx v

n) under (i)

p. 127

α(m) =
d i

d(m) i(m)
, β(m) =

i − i(m)

d(m) i(m)

p. 128

α(m) = 1 , β(m) =
m− 1

2m
when i = 0

p. 128
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ä
(m)
x:ne =

n−1
∑

k=0

vk kpx
1− vpx+k

m(1− (vpx+k)1/m)
under (ii)

p. 129

A(m)1x:k+1e − A(m)1x:ke =
i

i(m)
vk+1 kpx · qx+k under (i)

p. 132

A(m)1x:k+1e−A(m)1x:ke = vk+1 kpx (1− p
1/m
x+k)

i+ qx+k

1 + (i(m)/m)− p
1/m
x+k

under (ii)

p. 132

A(m)1x:k+1e − A(m)1x:ke = vk+1 kpx qx+k

m−1
∑

j=0

px+k v
−j/m

m (1− j+1
m

qx+k) (1− j
m

qx+k)

under (iii) p. 132

Level Installment Risk Premium =
F (0)A(m)1x:ne

mä
(m)
x:ne + m−1

2
A(m)1x:ne

p. 137

Apportionable Refund Risk Premium =
F (0)A(m)1x:ne

m ä
(m)
x:ne − 1

2
A(m)1x:ne

p. 138



Chapter 6

Commutation Functions,
Reserves & Select Mortality

In this Chapter, we consider first the historically important topic of Commu-
tation Functions for actuarial calculations, and indicate why they lose their
computational usefulness as soon as the insurer entertains the possibility (as
demographers often do) that life-table survival probabilities display some
slow secular trend with respect to year of birth. We continue our treatment
of premiums and insurance contract valuation by treating briefly the idea
of insurance reserves and policy cash values as the life-contingent analogue
of mortgage amortization and refinancing. The Chapter concludes with a
brief section on Select Mortality, showing how models for select-population
mortality can be used to calculate whether modified premium and deferral
options are sufficient protections for insurers to insure such populations.

6.1 Idea of Commutation Functions

The Commutation Functions are a computational device to ensure that net
single premiums for life annuities, endowments, and insurances from the same
life table and figured at the same interest rate, for lives of differing ages and
for policies of differing durations, can all be obtained from a single table look-
up. Historically, this idea has been very important in saving calculational
labor when arriving at premium quotes. Even now, assuming that a govern-

147
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ing life table and interest rate are chosen provisionally, company employees
without quantitative training could calculate premiums in a spreadsheet for-
mat with the aid of a life table.

To fix the idea, consider first the contract with the simplest net-single-
premium formula, namely the pure n-year endowment. The expected present
value of $1 one year in the future if the policyholder aged x is alive at that
time is denoted in older books as nEx and is called the actuarial present
value of a life-contingent n-year future payment of 1:

A 1
x:ne = nEx = vn npx

Even such a simple life-table and interest-related function would seem to re-
quire a table in the two integer parameters x, n, but the following expression
immediately shows that it can be recovered simply from a single tabulated
column:

A 1
x:ne =

vn+x ln+x
vx lx

=
Dx+n

Dx

, Dy ≡ vy ly (6.1)

In other words, at least for integer ages and durations we would simply
augment the insurance-company life-table by the column Dx. The addition
of just a few more columns allows the other main life-annuity and insurance
quantities to be recovered with no more than simple arithmetic. Thus, if we
begin by considering whole life insurances (with only one possible payment
at the end of the year of death), then the net single premium is re-written

Ax = A1x:∞e =
∞
∑

k=0

vk+1 kpx · qx+k =
∞
∑

k=0

vx+k+1 (lx+k − lx+k+1)

vx lx

=
∞
∑

y=x

vy+1
dy
Dx

=
Mx

Dx

, Mx ≡
∞
∑

y=x

vy+1 dy

The insurance of finite duration also has a simple expression in terms of the
same commutation columns M, D :

A1x:ne =
n−1
∑

k=0

vk+1
dk+x
Dx

=
Mx −Mx+n

Dx

(6.2)
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Next let us pass to to life annuities. Again we begin with the life annuity-
due of infinite duration:

äx = äx:∞e =
∞
∑

k=0

vk+x
lk+x
Dx

=
Nx

Dx

, Nx =
∞
∑

y=x

vy ly (6.3)

The commutation column Nx turns is the reverse cumulative sum of the
Dx column:

Nx =
∞
∑

y=x

Dy

The expected present value for the finite-duration life-annuity due is obtained
as a simple difference

äx:ne =
n−1
∑

k=0

vk+x
lx+k
Dx

=
Nx −Nx+n

Dx

There is no real need for a separate commutation column Mx since, as
we have seen, there is an identity relating net single premiums for whole life
insurances and annuities:

Ax = 1 − d äx

Writing this identity with Ax and äx replaced by their respective commutation-
function formulas, and then multupliying through by Dx, immediately yields

Mx = Dx − dNx (6.4)

Based on these tabulated commutation columns D, M, N , a quan-
titatively unskilled person could use simple formulas and tables to provide
on-the-spot insurance premium quotes, a useful and desirable outcome even
in these days of accessible high-powered computing. Using the case-(i) inter-
polation assumption, the m-payment-per-year net single premiums A(m)1x:ne

and ä
(m)
x:ne would be related to their single-payment counterparts (whose

commutation-function formulas have just been provided) through the stan-
dard formulas

A(m)1x:ne =
i

i(m)
A1x:ne , ä

(m)
x:ne = α(m) äx:ne − β(m)

(

1− A 1
x:ne

)
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Table 6.1: Commutation Columns for the simulated US Male Illustrative
Life-Table, Table 1.1, with APR interest-rate 6%.

Age x lx Dx Nx Mx

0 100000 100000.00 1664794.68 94233.66
5 96997 72481.80 1227973.94 69507.96

10 96702 53997.89 904739.10 51211.65
15 96435 40238.96 663822.79 37574.87
20 95840 29883.37 484519.81 27425.65
25 95051 22146.75 351486.75 19895.48
30 94295 16417.71 252900.70 14315.13
35 93475 12161.59 179821.07 10178.55
40 92315 8975.07 125748.60 7117.85
45 90402 6567.71 85951.37 4865.17
50 87119 4729.55 56988.31 3225.75
55 82249 3336.63 36282.55 2053.73
60 75221 2280.27 21833.77 1235.87
65 65600 1486.01 12110.79 685.52
70 53484 905.34 5920.45 335.12
75 39975 505.65 2256.41 127.72

That is,

A(m)1x:ne =
i

i(m)
· Mx −Mx+n

Dx

ä
(m)
x:ne = α(m)

Nx −Nx+n

Dx

− β(m) (1− Dx+n

Dx

)

To illustrate the realistic sizes of commutation-column numbers, we re-
produce as Table 6.1 the main commutation-columns for 6% APR interest,
in 5-year intervals, for the illustrative simulated life table given on page 3.

6.1.1 Variable-benefit Commutation Formulas

The only additional formulas which might be commonly needed in insurance
sales are the variable-benefit term insurances with linearly increasing or de-
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creasing benefits, and we content ourselves with showing how an additional
commutation-column could serve here. First consider the infinite-duration
policy with linearly increasing benefit

IAx =
∞
∑

k=0

(k + 1) vk+1 kpx · qx+k

This net single premium can be written in terms of the commutation func-
tions already given together with

Rx =
∞
∑

k=0

(x+ k + 1) vx+k+1 dx+k

Clearly, the summation defining IAx can be written as

∞
∑

k=0

(x+ k + 1) vk+1 kpx · qx+k − x

∞
∑

k=0

vk+1 kpx · qx+k =
Rx

Dx

− x
Mx

Dx

Then, as we have discussed earlier, the finite-duration linearly-increasing-
benefit insurance has the expression

IA1x:ne = IAx −
∞
∑

k=n

(k + 1) vk+x+1
dx+k
Dx

=
Rx − xMx

Dx

− Rx+n − xMx+n

Dx

and the net single premium for the linearly-decreasing-benefit insurance,
which pays benefit n − k if death occurs between exact policy ages k
and k + 1 for k = 0, . . . , n − 1, can be obtained from the increasing-
benefit insurance through the identity

DA1x:ne = (n+ 1)A1x:ne − IA1x:ne

Throughout all of our discussions of premium calculation — not just the
present consideration of formulas in terms of commutation functions — we
have assumed that for ages of prospective policyholders, the same interest
rate and life table would apply. In a future Chapter, we shall consider the
problem of premium calculation and reserving under variable and stochastic
interest-rate assumptions, but for the present we continue to fix the interest
rate i. Here we consider briefly what would happen to premium calcula-
tion and the commutation formalism if the key assumption that the same
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life table applies to all insureds were to be replaced by an assumption in-
volving interpolation between (the death rates defined by) two separate life
tables applying to different birth cohorts. This is a particular case of a
topic which we shall also take up in a future chapter, namely how extra
(‘covariate’ ) information about a prospective policyholder might change the
survival probabilities which should be used to calculate premiums for that
policyholder.

6.1.2 Secular Trends in Mortality

Demographers recognize that there are secular shifts over time in life-table
age-specific death-rates. The reasons for this are primarily related to public
health (e.g., through the eradication or successful treatment of certain dis-
ease conditions), sanitation, diet, regulation of hours and conditions of work,
etc. As we have discussed previously in introducing the concept of force of
mortality, the modelling of shifts in mortality patterns with respect to likely
causes of death at different ages suggests that it is most natural to express
shifts in mortality in terms of force-of-mortality and death rates rather than
in terms of probability density or population-wide relative numbers of deaths
in various age-intervals. One of the simplest models of this type, used for
projections over limited periods of time by demographers (cf. the text Intro-
duction to Demography by M. Spiegelman), is to view age-specific death-rates
qx as locally linear functions of calendar time t. Mathematically, it may be
slightly more natural to make this assumption of linearity directly about the
force of mortality. Suppose therefore that in calendar year t, the force of
mortality µ

(t)
x at all ages x is assumed to have the form

µ(t)x = µ(0)x + bx t (6.5)

where µ
(0)
x is the force-of-mortality associated with some standard life table

as of some arbitrary but fixed calendar-time origin t = 0. The age-dependent
slope bx will generally be extremely small. Then, placing superscripts (t)

over all life-table entries and ratios to designate calendar time, we calculate

kp
(t)
x = exp

(

−
∫ k

0

µ
(t)
x+u du

)

= kp
(t)
x · exp(−t

k−1
∑

j=0

bx+j)
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If we denote

Bx =
x
∑

y=0

by

and assume that the life-table radix l0 is not taken to vary with calendar
time, then the commutation-function Dx = D

(t)
x takes the form

D(t)x = vx l0 xp
(t)
0 = D(0)x e−tBx (6.6)

Thus the commutation-columns D
(0)
x (from the standard life-table) and Bx

are enough to reproduce the time-dependent commutation column D, but
now the calculation is not quite so simple, and the time-dependent commu-
tation columns M, N become

M (t)
x =

∞
∑

y=x

vy (l(t)y − l
(t)
y+1) =

∞
∑

y=x

D(0)y e−tBy

(

1− e−t by+1 q(0)y

)

(6.7)

N (t)
x =

∞
∑

y=x

D(0)y e−tBy (6.8)

For simplicity, one might replace equation (6.7) by the approximation

M (t)
x =

∞
∑

y=x

D(0)y

(

p(0)y + t by+1 q
(0)
y

)

e−tBy

None of these formulas would be too difficult to calculate with, for example
on a hand-calculator; moreover, since the calendar year t would be fixed for
the printed tables which an insurance salesperson would carry around, the
virtues of commutation functions in providing quick premium-quotes would
not be lost if the life tables used were to vary systematically from one calendar
year to the next.

6.2 Reserve & Cash Value of a Single Policy

In long-term insurance policies paid for by level premiums, it is clear that
since risks of death rise very rapidly with age beyond middle-age, the early
premium payments must to some extent exceed the early insurance costs.
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Our calculation of risk premiums ensures by definition that for each insurance
and/or endowment policy, the expected total present value of premiums paid
in will equal the expected present value of claims to be paid out. However,
it is generally not true within each year of the policy that the expected
present value of amounts paid in are equal to the expected present value of
amounts paid out. In the early policy years, the difference paid in versus
out is generally in the insurer’s favor, and the surplus must be set aside as a
reserve against expected claims in later policy-years. It is the purpose of the
present section to make all of these assertions mathematically precise, and to
show how the reserve amounts are to be calculated. Note once and for all that
loading plays no role in the calculation of reserves: throughout this Section,
‘premiums’ refer only to pure-risk premiums. The loading portion of actual
premium payments is considered either as reimbursement of administrative
costs or as profit of the insurer, but in any case does not represent buildup
of value for the insured.

Suppose that a policyholder aged x purchased an endowment or insur-
ance (of duration at least t) t years ago, paid for with level premiums, and
has survived to the present. Define the net (level) premium reserve as
of time t to be the excess tV of the expected present value of the amount
to be paid out under the contract in future years over the expected present
value of further pure risk premiums to be paid in (including the premium
paid immediately, in case policy age t coincides with a time of premium-
payment). Just as the notations P 1x:ne, P 1

x:ne, etc., are respectively used to
denote the level annual premium amounts for a term insurance, an endow-
ment, etc., we use the same system of sub- and superscripts with the symbol

tV to describe the reserves on these different types of policies.

By definition, the net premium reserve of any of the possible types of
contract as of policy-age t = 0 is 0 : this simply expresses the balance
between expected present value of amounts to be paid into and out of the
insurer under the policy. On the other hand, the terminal reserve under the
policy, which is to say the reserve nV just before termination, will differ
from one type of policy to another. The main possibilities are the pure term
insurance, with reserves denoted tV

1
x:ne and terminal reserve nV

1
x:ne = 0, and

the endowment insurance, with reserves denoted tV
1

x:ne and terminal reserve

nV
1

x:ne = 1. In each of these two examples, just before policy termination
there are no further premiums to be received or insurance benefits to be paid,
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so that the terminal reserve coincides with the terminal (i.e., endowment)
benefit to be paid at policy termination. Note that for simplicity, we do
not consider here the insurances or endowment insurances with m > 1
possible payments per year. The reserves for such policies can be obtained
as previously discussed from the one-payment-per-year case via interpolation
formulas.

The definition of net premium reserves is by nature prospective, referring
to future payment streams and their expected present values. From the def-
inition, the formulas for reserves under the term and endowment insurances
are respectively given by:

tV
1
x:ne = A1x+t:n−te − P 1x:ne · äx+t:n−te (6.9)

tVx:ne = Ax+t:n−te − Px:ne · äx+t:n−te (6.10)

One identity from our previous discussions of net single premiums im-
mediately simplifies the description of reserves for endowment insurances.
Recall the identity

äx:ne =
1− Ax:ne

d
=⇒ Ax:ne = 1 − d äx:ne

Dividing the second form of this identity through by the net single premium
for the life annuity-due, we obtain

Px:ne =
1

äx:ne

− d (6.11)

after which we immediately derive from the definition the reserve-identity

tVx:ne = äx+t:n−te

(

Px+t:n−te − Px:ne

)

= 1 − äx+t:n−te

äx:ne

(6.12)

6.2.1 Retrospective Formulas & Identities

The notion of reserve discussed so far expresses a difference between expected
present value of amounts to be paid out and to be paid in to the insurer dating
from t years following policy initiation, conditionally given the survival of
the insured life aged x for the additional t years to reach age x + t. It
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stands to reason that, assuming this reserve amount to be positive, there
must have been up to time t an excess of premiums collected over insurance
acquired up to duration t. This latter amount is called the cash value of
the policy when accumulated actuarially to time t, and represents a cash
amount to which the policyholder is entitled (less administrative expenses)
if he wishes to discontinue the insurance. (Of course, since the insured has
lived to age x + t, in one sense the insurance has not been ‘used’ at all
because it did not generate a claim, but an insurance up to policy age t was
in any case the only part of the purchased benefit which could have brought
a payment from the insurer up to policy age t.) The insurance bought
had the time-0 present value A1

x:te
, and the premiums paid prior to time t

had time-0 present value äx:te · P , where P denotes the level annualized
premium for the duration-n contract actually purchased.

To understand clearly why there is a close connection between retrospec-
tive and prospective differences between expected (present value of) amounts
paid in and paid out under an insurance/endowment contract, we state a
general and slightly abstract proposition.

Suppose that a life-contingent payment stream (of duration n at
least t) can be described in two stages, as conferring a benefit of
expected time-0 present value Ut on the policy-age-interval [0, t)
(up to but not including policy age t ), and also conferring a
benefit if the policyholder is alive as of policy age t with expected
present value as of time t which is equal to Ft. Then the
total expected time-0 present value of the contractual
payment stream is

Ut + vt tpx Ft

Before applying this idea to the balancing of prospective and retrospective re-
serves, we obtain without further effort three useful identities by recognizing
that a term life-insurance, insurance endowment, and life annuity-due (all of
duration n) can each be divided into a before- and after- t component along
the lines of the displayed Proposition. (Assume for the following discussion
that the intermediate duration t is also an integer.) For the insurance, the
benefit Ut up to t is A1

x:te
, and the contingent after-t benefit Ft is

A1
x+t:n−te

. For the endowment insurance, Ut = A1
x:te

and Ft = Ax+t:n−te.
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Finally, for the life annuity-due, Ut = äx:te and Ft = äx+t:n−te. Assembling
these facts using the displayed Proposition, we have our three identities:

A1x:ne = A1x:te + vt tpx A1x+t:n−te (6.13)

Ax:ne = A1x:te + vt tpx Ax+t:n−te (6.14)

äx:ne = äx:te + vt tpx äx+t:n−te (6.15)

The factor vt tpx, which discounts present values from time t to the
present values at time 0 contingent on survival to t, has been called above
the actuarial present value. It coincides with tEx = A 1

x:te
, the expected

present value at 0 of a payment of 1 to be made at time t if the life aged x
survives to age x+t. This is the factor which connects the excess of insurance
over premiums on [0, t) with the reserves tV on the insurance/endowment
contracts which refer prospectively to the period [t, n]. Indeed, substituting
the identities (6.13), (6.14), and (6.15) into the identities

A1x:ne = P 1x:ne äx:ne , Ax:ne = Px:ne äx:ne

yields

vt tpx tV
1
x:ne = −

[

A1x:te − P 1x:ne äx:ne

]

(6.16)

vt tpx tVx:ne = −
[

Ax:te − Px:te äx:ne

]

(6.17)

The interpretation in words of these last two equations is that the actuarial
present value of the net (level) premium reserve at time t (of either the
term insurance or endowment insurance contract) is equal to the negative of
the expected present value of the difference between the contract proceeds
and the premiums paid on [0, t).

Figure 6.1 provides next an illustrative set of calculated net level premium
reserves, based upon 6% interest, for a 40-year term life insurance with face-
amount 1, 000 for a life aged 40. The mortality laws used in this calculation,
chosen from the same families of laws used to illustrate force-of-mortality
curves in Figures 2.3 and 2.4 in Chapter 2, are the same plausible mortality
laws whose survival functions are pictured in Figure 2.5. These mortality
laws are realistic in the sense that they closely mirror the US male mortality
in 1959 (cf. plotted points in Figure 2.5.) The cash-reserve curves tV40:40e

as functions of t = 0, . . . , 40 are pictured graphically in Figure 6.1. Note
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that these reserves can be very substantial: at policy age 30, the reserves
on the $1000 term insurance are respectively $459.17, $379.79, $439.06, and
$316.43.

6.2.2 Relating Insurance & Endowment Reserves

The simplest formulas for net level premium reserves in a general contract
arise in the case of endowment insurance tV

1
x:ne, as we have seen in formula

(6.12). In fact, for endowment and/or insurance contracts in which the period
of payment of level premiums coincides with the (finite or infinite) policy
duration, the reserves for term-insurance and pure-endowment can also be
expressed rather simply in terms of tVx:ne. Indeed, reasoning from first
principles with the prospective formula, we find for the pure endowment

tV
1

x:ne = vn−t n−tpx+t −
vn npx
äx:ne

äx+t:n−te

from which, by substitution of formula (6.12), we obtain

V 1
x:ne = vn−t n−tpx+t − vn npx

(

1 − tVx:ne

)

(6.18)

Then, for net level reserves or cash value on a term insurance, we conclude

V1x:ne = (1− vn npx) tVx:ne + vn npx − vn−t n−tpx+t (6.19)

6.2.3 Reserves under Constant Force of Mortality

We have indicated above that the phenomenon of positive reserves relates in
some way to the aging of human populations, as reflected in the increasing
force of mortality associated with life-table survival probabilities. A simple
benchmark example helps us here: we show that when life-table survival is
governed at all ages x and greater by a constant force of mortality µ,
the reserves for term insurances are identically 0. In other words, the
expected present value of premiums paid in within each policy year exactly
compensates, under constant force of mortality, for the expected present
value of the amount to be paid out for that same policy year.
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Reserves for Term Insurance & Various Mortality Laws

Policy Age (years)
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Lognormal(3.491, .246^2)
Weibull(3.653, 1.953e-6)
Gamma(14.74, 0.4383)
Gompertz(3.46e-3, 1.0918)

Figure 6.1: Net level premium reserves as a function of policy age for a 40-
year term insurance to a life aged 40 with level benefit 1000, at 6%, under the
same mortality laws pictured in Figures 2.5, with median age 72 at death.
For definitions of the mortality laws see the Examples of analytical force-of-
mortality functions in Chapter 2.
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The calculations here are very simple. Reasoning from first principles,
under constant force of mortality

A1x:ne =
n−1
∑

k=0

vk+1 e−µk (1− e−µ) = (eµ − 1) (ve−µ)
1 − (ve−µ)n

1 − ve−µ

while

äx:ne =
n−1
∑

k=0

vk e−µk =
1 − (ve−µ)n

1 − ve−µ

It follows from these last two equations that

P 1x:ne = v (1 − e−µ)

which does not depend upon either age x (within the age-range where
constant force of mortality holds) or n . The immediate result is that for
0 < t < n

tV
1
x:ne = äx+t:n−te

(

P 1x+t:n−te − P 1x:ne

)

= 0

By contrast, since the terminal reserve of an endowment insurance must be
1 even under constant force of mortality, the intermediate net level premium
reserves for endowment insurance must be positive and growing. Indeed, we
have the formula deriving from equation (6.12)

tVx:ne = 1 − äx+t:n−te

äx:ne

= 1 − 1− (ve−µ)n−t

1− (ve−µ)n

6.2.4 Reserves under Increasing Force of Mortality

Intuitively, we should expect that a force-of-mortality function which is ev-
erywhere increasing for ages greater than or equal to x will result in inter-
mediate reserves for term insurance which are positive at times between 0, n
and in reserves for endowment insurance which increase from 0 at t = 0 to
1 at t = n. In this subsection, we prove those assertions, using the simple
observation that when µ(x+ y) is an increasing function of positive y,

kpx+y = exp(−
∫ k

0

µ(x+ y + z) dz) ↘ in y (6.20)
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First suppose that 0 ≤ s < t ≤ n, and calculate using the displayed fact
that kpx+y decreases in y,

äx+t:n−te =
n−t−1
∑

k=0

vk+1 kpx+t ≤
n−t−1
∑

k=0

vk+1 kpx+s < äx+s:n−se

Therefore äx+t:n−te is a decreasing function of t, and by formula (6.12),

tVx:ne is an increasing function of t, ranging from 0 at t = 0 to 1 at
t = 1.

It remains to show that for force of mortality which is increasing in age,
the net level premium reserves tV

1
x:ne for term insurances are positive for

t = 1, . . . , n− 1. By equation (6.9) above, this assertion is equivalent to the
claim that

A1x+t:n−te/äx+t:n−te > A1x:ne/äx:ne

To see why this is true, it is instructive to remark that each of the displayed
ratios is in fact a multiple v times a weighted average of death-rates: for
0 ≤ s < n,

A1
x+s:n−se

äx+s:n−se

= v
{

∑n−s−1
k=0 vk kpx+s qx+s+k
∑n−s−1

k=0 vk kpx+s

}

Now fix the age x arbitrarily, together with t ∈ {1, . . . , n− 1}, and define

q =

∑n−1
j=t vj jpx qx+j
∑n−1

j=t vj jpx

Since µx+y is assumed increasing for all y, we have from formula (6.20)
that qx+j = 1 − px+j is an increasing function of j, so that for k < t ≤
j, qx+k < qx+j and

for all k ∈ {0, . . . , t− 1} , qx+k < q (6.21)

Moreover, dividing numerator and denominator of the ratio defining q by
vt tpx gives the alternative expression

v q =

∑n−t−1
a=0 va apx+t qx+t+a
∑n−t−1

a=0 va apx+t
= P 1x+t:n−te
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Finally, using equation (6.21) and the definition of q once more, we calculate

A1x:ne

äx:ne

= v
(

∑t−1
k=0 vk kpx qx+k +

∑n−t−1
j=t vj jpx qx+j

∑t−1
k=0 vk kpx +

∑n−t−1
j=t vj jpx

)

= v
(

∑t−1
k=0 vk kpx qx+k + q

∑n−t−1
j=t vj jpx

∑t−1
k=0 vk kpx +

∑n−t−1
j=t vj jpx

)

< v q = P 1x+t:n−te

as was to be shown. The conclusion is that under the assumption of increasing
force of mortality for all ages x and larger, tV

1
x:ne > 0 for t = 1, . . . , n− 1.

6.2.5 Recursive Calculation of Reserves

The calculation of reserves can be made very simple and mechanical in nu-
merical examples with small illustrative life tables, due to the identities (6.13)
and (6.14) together with the easily proved recursive identities (for integers
t)

A1x:t+1e = A1x:te + vt+1 tpx qx+t

Ax:t+1e = Ax:te − vt tpx + vt+1 tpx = Ax:te − d vt tpx

äx:t+1e = äx:te + vt tpx

Combining the first and third of these recursions with (6.13), we find

tV
1
x:ne =

−1
vt tpx

(

A1x:te − P 1x:ne äx:te

)

=
−1

vt tpx

(

A1x:t+1e − vt+1 tpx qx+t − P 1x:ne

[

äx:t+1e − vt tpx

] )

= v px+t t+1V
1
x:ne + v qx+t − P 1x:ne

The result for term-insurance reserves is the single recursion

tV
1
x:ne = v px+t t+1V

1
x:ne + v qx+t − P 1x:ne (6.22)

which we can interpret in words as follows. The reserves at integer policy-
age t are equal to the sum of the one-year-ahead actuarial present value
of the reserves at time t + 1 and the excess of the present value of this
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year’s expected insurance payout (v qx+t) over this year’s received premium
(P 1x:ne).

A completely similar algebraic proof, combining the one-year recursions
above for endowment insurance and life annuity-due with identity (6.14),
yields a recursive formula for endowment-insurance reserves (when t < n) :

tVx:ne = v px+t t+1Vx:ne + v qx+t − P 1x:ne (6.23)

The verbal intepretation is as before: the future reserve is discounted by the
one-year actuarial present value and added to the expected present value of
the one-year term insurance minus the one-year cash (risk) premium.

6.2.6 Paid-Up Insurance

An insured may want to be aware of the cash value (equal to the reserve)
of an insurance or endowment either in order to discontinue the contract
and receive the cash or to continue the contract in its current form and
borrow with the reserve as collateral. However, it may also happen for various
reasons that an insured may want to continue insurance coverage but is
no longer able or willing to par further premiums. In that case, for an
administrative fee the insurer can convert the premium reserve to a single
premium for a new insurance (either with the same term, or whole-life) with
lesser benefit amount. This is really not a new topic, but a combination of the
previous formulas for reserves and net single premiums. In this sub-section,
we give the simplified formula for the case where the cash reserve is used as a
single premium to purchase a new whole-life policy. Two illustrative worked
examples on this topic are given in Section 6.6 below.

The general formula for reserves, now specialized for whole-life insur-
ances, is

tVx = Ax+t −
Ax

äx
· äx+t = 1 − äx+t

äx
This formula, which applies to a unit face amount, would be multiplied
through by the level benefit amount B. Note that loading is disregarded
in this calculation. The idea is that any loading which may have applied
has been collected as part of the level premiums; but in practice, the insurer
might apply some further (possibly lesser) loading to cover future adminis-
trative costs. Now if the cash or reserve value tVx is to serve as net single
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premium for a new insurance, the new face-amount F is determined as of
the t policy-anniversary by the balance equation

B · tVx = F · Ax+t

which implies that the equivalent face amount of paid-up insurance as
of policy-age t is

F =
B tVx

Ax+t

= B

(

1 − äx+t
äx

)

/

(1 − d äx+t) (6.24)

6.3 Select Mortality Tables & Insurance

Insurers are often asked to provide life insurance converage to groups and/or
individuals who belong to special populations with mortality significantly
worse than that of the general population. Yet such select populations
may not be large enough, or have a sufficiently long data-history, within the
insurer’s portfolio for survival probabilities to be well-estimated in-house. In
such cases, insurers may provide coverage under special premiums and terms.
The most usual example is that such select risks may be issued insurance with
restricted or no benefits for a specified period of time, e.g. 5 years. The stated
rationale is that after such a period of deferral, the select group’s mortality
will be sufficiently like the mortality of the general population in order that
the insurer will be adequately protected if the premium in increased by some
standard multiple. In this Section, a slightly artifical calculation along these
lines illustrates the principle and gives some numerical examples.

Assume for simplicity that the general population has constant force of
mortality µ, and that the select group has larger force of mortality µ∗. If
the interest rate is i, and v = 1/(1+ i), then the level yearly risk premium
for a k-year deferred whole-life insurance (of unit amount, payable at the end
of the year of death) to a randomly selected life (of any specified age x) from
the general population is easily calculated to be

Level Risk Premium = vk kpx Ax+k/äx = (1− e−µ) vk+1 e−µk (6.25)

If this premium is multiplied by a factor κ > 1 and applied as the risk
premium for a k-year deferred whole-life policy to a member of the select
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Table 6.2: Excess payout as given by formula (6.26) under a k-year deferred
whole life insurance with benefit $1000, issued to a select population with
constant force of mortality µ∗ for a level yearly premium which is a multiple
κ times the pure risk premium for the standard population which has force-
of-mortality µ. Interest rate is i = 0.06 APR throughout.

k µ µ∗ κ Excess Payout

0 0.02 0.03 1 109
0 0.02 0.03 2 -112
5 0.02 0.03 1 63
5 0.02 0.03 1.42 0
0 0.05 0.10 1 299
0 0.05 0.10 3 -330
5 0.05 0.10 1 95
5 0.05 0.10 1.52 0
3 0.05 0.10 1 95
3 0.05 0.10 1.68 0

population, then the expected excess (per unit of benefit) of the amount
paid out under this select policy over the risk premiums collected, is

Excess Payout = vk kp
∗
x A

∗
x+k − κ (1− e−µ) vk+1 e−µk ä∗x

=
vk+1

1− ve−mu∗

{

(1− e−µ)e−µk − (1− e−µ
∗

)e−µ
∗k
}

(6.26)

where the probability, insurance, and annuity notations with superscripts ∗

are calculated using the select mortality distribution with force of mortality
µ∗. Because of the constancy of forces of mortality both in the general and
the select populations, the premiums and excess payouts do not depend on
the age of the insured. Table 6.3 shows the values of some of these excess
payouts, for i = 0.06, under several combinations of k, µ, µ∗, and κ. Note
that in these examples, select mortality with force of mortality multiplied by
1.5 or 2 is offset, with sufficient protection to the insurer, by an increase of
40–60% in premium on whole-life policies deferring benefits by 3 or 5 years.

Additional material will be added to this Section later. A calculation
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along the same lines as the foregoing Table, but using the Gompertz(3.46e−
3, 1.0918) mortality law previously found to approximate well the realistic
Life Table data in Table 1.1, will be included for completeness.

6.4 Exercise Set 6

For the first problem, use the Simulated Illustrative Life Table with commu-
tator columns given as Table 6.1 on page 150, using 6% APR as the going
rate of interest. (Also assume, wherever necessary, that the distribution of
deaths within whole years of age is uniform.)

(1). (a) Find the level premium for a 20-year term insurance of $5000 for
an individual aged 45, which pays at the end of the half-year of death, where
the payments are to be made semi-annually.

(b) Find the level annual premium for a whole-life insurance for an
individual aged 35, which pays $30,000 at the end of year of death if death
occurs before exact age 55 and pays $60,000 at the instant (i.e., day) of death
at any later age.

(2). You are given the following information, indirectly relating to the fixed
rate of interest i and life-table survival probabilities kpx .

(i) For a one-payment-per-year level-premium 30-year endowment insur-
ance of 1 on a life aged x, the amount of reduced paid-up endowment
insurance at the end of 10 years is 0.5.

(ii) For a one-payment-per-year level-premium 20-year endowment in-
surance of 1 on a life aged x+10, the amount of reduced paid-up insurance
at the end of 5 years is 0.3.

Assuming that cash values are equal to net level premium reserves and
reduced paid-up insurances are calculated using the equivalence principle, so
that the cash value is equated to the net single premium of an endowment
insurance with reduced face value, calculate the amount of reduced paid-up
insuranceat the end of 15 years for the 30-year endowment insuranceof 1
on a life aged x. See the following Worked Examples for some relevant
formulas.
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(3). Give a formula for A45 in terms of the following quantities alone:

25p20 , ä20:25e , P20:25e , 25P20 , v25

where

Px:ne = Ax:ne

/

äx:ne and tPx = Ax

/

äx:te

(4). A life aged 32 purchases a life annuity of 3000 per year. From tables,
we find commutation function values

N32 = 2210 , N34 = 1988 , D33 = 105

Find the net single premium for the annuity purchased if the first yearly
payment is to be received (a) immediately, (b) in 1 year, and (c) in 2
years.

(5). Henry, who has just reached his 70th birthday, is retiring immediately
with a monthly pension income of 2500 for life, beginning in 1 month. Us-
ing the uniform-failure assumption between birthdays and the commutation
function values M70 = 26.2 and D70 = 71 associated with the interest rate
i = 0.05, find the expected present value of Henry’s retirement annuity.

(6). Find the cash value of a whole-life insurance for $100, 000 on a life aged
45 with yearly premium-payments (which began at issuance of the policy)
after 25 years, assuming interest at 5% and constant force-of-mortality
µ40+t = 0.07 for all t > 0.

(7). Suppose that 25 years ago, a life then aged 40 bought a whole-
life insurance policy with quarterly premium payments and benefit payable
at the end of the quarter of death, with loading-factor 4%. Assume that
the interest rate used to figure present values and premiums on the policy
was 6% and that the life-table survival probabilities used were tp40 =
(60− t)/60. If the insured is now alive at age 65, then find the face amount
of paid-up insurance which he is entitled to — with no further premiums
paid and no further loading applied — on a whole-life policy with benefits
payable at the end of quarter-year of death.

(7). Verify formulas (6.25) and (6.26).
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6.5 Illustration of Commutation Columns

Consider the following articial life-table fragment, which we imagine to be
available together with data also for all older ages,on a population of potential
insureds:

x lx dx
45 75000 750
46 74250 760
47 73490 770
48 72720 780
49 71940 790
50 71150

Let us imagine that the going rate of interest is 5% APR, and that we are
interested in calculating various life insurance and annuity risk-premiums for
level-benefit contracts and payments only on policy anniversaries (m = 1), on
lives aged 45 to 50. One way of understanding what commutation columns
do is to remark that all whole-life net single premiums of this type are calcu-
lable directly from the table-fragment given along with the single additional
number A50 = 0.450426. The point is that all of the commutation columns
Dx, Nx, Mx for ages 45 to 49 can now be filled in. First, we use the identity
(6.4) to obtain

D50 = 1.05−50 71150 = 6204.54, M50 = D50 0.450426 = 2794.69

N50 = D50 ä50 =
D50
d

(1 − A50) =
1.05

0.05
(D50 −M50) = 71606.99

Next we fill in the rest of the columns for ages 45 to 49 by the definition of
Dx as 1.05x lx and the simple recursive calculations

Nx = Nx+1 + Dx , Mx = Mx+1 + vx+1 dx

Filling these values in for x = 49, 48, . . . , 45 gives the completed fragment
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x lx dx Dx Nx Mx

45 75000 750 8347.24 106679.11 3267.81
46 74250 760 7870.25 98808.85 3165.07
47 73490 770 7418.76 91390.10 3066.85
48 72720 780 6991.45 84398.64 2972.47
49 71940 790 6587.11 77811.53 2891.80
50 71150 6204.54 71606.99 2794.69

From this table fragment we can deduce, for example, that a whole-life
annuity-due of $2000 per year to a life aged 47 has expected present value
2000N47/D47 = 24637.57 , or that a five-year term insurance of 100, 000 to
a life aged 45 has net single premium 100000 · (M45−M50)/D50 = 5661.66 ,
or that a whole-life insurance of 200, 000 with level premiums payable for 5
years to a life aged 45 has level pure-risk premiums of 200, 000 · M45/(N45−
N50) = 18631.78.

6.6 Examples on Paid-up Insurance

Example 1. Suppose that a life aged 50 has purchased a whole life insurance
for $100, 000 with level annual premiums and has paid premiums for 15
years. Now, being aged 65, the insured wants to stop paying premiums and
convert the cash value of the insurance into (the net single premium for) a
fully paid-up whole-life insurance. Using the APR interest rate of 6% and
commutator columns given in Table 6.1 and disregarding premium loading,
calculate the face amount of the new, paid-up insurance policy.

Solution. Applying formula (6.24) to the Example, with x = 50, t =
15, B = 100, 000, and using Table 6.1,gives

F = 100, 000

(

D65 −
N65D50

N50

)

/

(D65 − dN65)

= 100, 000
1486.01− 4729.55

56988.31
12110.79

1486.01 − 0.06
1.06

12110.79
= 60077.48

If the new insurance premium were to be figured with a loading such as
L′ = 0.02, then the final amount figured using pure-risk premiums would be
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divided by 1.02, because the cash value would then be regarded as a single
risk premium which when inflated by the factor 1+L′ purchases the contract
of expected present value F · Ax+t.

The same ideas can be applied to the re-figuring of the amount of other
insurance contracts, such as an endowment, based upon an incomplete stream
of premium payments.

Example 2. Suppose that a 20-year pure endowment for 50, 000 on a new-
born governed by the life-table and commutator columns in Table 6.1, with
seminannual premiums, but that after 15 years the purchaser can afford no
more premium payments. Disregarding loading, and assuming uniform dis-
tribution of death-times within single years of age, what is the benefit amount
which the child is entitled to receive at age 20 if then alive ?

Solution. Now the prospective formula for cash value or reserve based on
initial benefit amount B is

B

(

5p15 v
5 − 20p0 v

20
ä
(2)
15:5e

ä
(2)
0:20e

)

which will be used to balance the endowment F A 1
15:5e

. Therefore, substi-
tuting the approximate formula (5.6), we obtain

F = B ·
(

5p15 v
5 − 20p0 v

20
α(2) ä

(2)
15:5e
− β(2)(1− 5p15 v

5)

α(2) ä
(2)
0:20e
− β(2)(1− 20p0 v20)

)

/

( 5p15 v
5)

In the particular example, where i = 0.06, α(2) = 1.000212, and β(2) =
0.257391, we find

F = 50000 ·
(

1 − 1.000212 (N15 −N20) − 0.257391 (D15 −D20)

1.000212 (N0 −N20) − 0.257391 (D0 −D20)

)

and using Table 6.1 it follows that F = 42400.91 .
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6.7 Useful formulas from Chapter 6

Commutation Columns Dy = vy ly , Mx =
∞
∑

y=x

vy+1 dy

p. 148

nEx =
Dx+n

Dx

, Ax =
Mx

Dx

, A1x:ne =
Mx −Mx+n

Dx

p. 148

Nx =
∞
∑

y=x

vy ly =
∞
∑

y=x

Dy , äx =
Nx

Dx

p. 149

äx:ne =
n−1
∑

k=0

vk+x
lx+k
Dx

=
Nx −Nx+n

Dx

p. 148

Mx = Dx − dNx

p. 149

A(m)1x:ne =
i

i(m)
· Mx −Mx+n

Dx

p. 150

ä
(m)
x:ne = α(m)

Nx −Nx+n

Dx

− β(m) (1− Dx+n

Dx

)

p. 150

tV
1
x:ne = A1x+t:n−te − P 1x:ne · äx+t:n−te

p. 155
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tVx:ne = Ax+t:n−te − Px:ne · äx+t:n−te

p. 155

Px:ne =
1

äx:ne

− d

p. 155

tVx:ne = äx+t:n−te

(

Px+t:n−te − Px:ne

)

= 1 − äx+t:n−te

äx:ne

p. 155

A1x:ne = A1x:te + vt tpx A1x+t:n−te

p. 157

Ax:ne = A1x:te + vt tpx Ax+t:n−te

p. 157

äx:ne = äx:te + vt tpx äx+t:n−te

p. 157

vt tpx tV
1
x:ne = −

[

A1x:te − P 1x:ne äx:ne

]

p. 157

vt tpx tVx:ne = −
[

Ax:te − Px:te äx:ne

]

p. 157

V 1
x:ne = vn−t n−tpx+t − vn npx

(

1 − tVx:ne

)

p. 158
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V1x:ne = (1− vn npx) tVx:ne + vn npx − vn−t n−tpx+t

p. 158

tV
1
x:ne = v px+t t+1V

1
x:ne + v qx+t − P 1x:ne

p. 162

Paid-up insurance Amt = B

(

1 − äx+t
äx

)

/

(1 − d äx+t)

p. 164
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