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Abstract. We formulate a nonrecursive combinatorial rule for the expansion

of the stable Grothendieck polynomials of [Fomin-Kirillov ’94] in the basis of

stable Grothendieck polynomials for partitions. This gives a common general-

ization, as well as new proofs of the rule of [Fomin-Greene ’98] for the expansion

of the stable Schubert polynomials into Schur polynomials, and the K-theoretic

Grassmannian Littlewood-Richardson rule of [Buch ’02]. The proof is based
on a generalization of the Robinson-Schensted and Edelman-Greene insertion

algorithms. Our results are applied to prove a number of new formulas and
properties for K-theoretic quiver polynomials, and the Grothendieck poly-
nomials of [Lascoux-Schützenberger ’82]. In particular, we provide the first
K-theoretic analogue of the factor sequence formula of [Buch-Fulton ’99] for
the cohomological quiver polynomials.

1. Introduction and main results

1.1. Stable Grothendieck polynomials. For each permutation π there is a sym-
metric power series Gπ = Gπ(x1, x2, . . . ) called the stable Grothendieck polynomial
for π. These power series were defined by Fomin and Kirillov [14, 13] as a limit
of the ordinary Grothendieck polynomials of Lascoux and Schützenberger [18]. We
recall this definition in Section 2. The term of lowest degree in Gπ is the Stanley
symmetric function (or stable Schubert polynomial) Fπ. The Stanley coefficients
which appear in the Schur expansion of a Stanley function are interesting combi-
natorial invariants which generalize the Littlewood-Richardson coefficients.

Given a partition λ = (λ1 ≥ · · · ≥ λk ≥ 0), the Grassmannian permutation πλ

for λ is uniquely defined by the requirement that πλ(i) = i + λk+1−i for 1 ≤ i ≤ k
and πλ(i) < πλ(i + 1) for i 6= k. The power series Gλ := Gπλ

play a role in
combinatorial K-theory similar to the role of Schur functions in cohomology. Buch
has shown [3] that any stable Grothendieck polynomial Gπ can be written as a
finite linear combination

(1) Gπ =
∑

λ

cπ,λGλ

of stable Grothendieck polynomials indexed by partitions, using integer coefficients
cπ,λ that generalize the Stanley coefficients [2]. Lascoux gave a recursive formula for
stable Grothendieck polynomials which confirms a conjecture that these coefficients
have signs that alternate with degree, i.e. (−1)|λ|−`(π)cπ,λ ≥ 0 [17]. Here |λ| =
λ1 + · · · + λk and `(π) is the Coxeter length of π. The central result of this paper
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is a new formula for the coefficients cπ,λ which generalizes Fomin and Greene’s
combinatorial rule [12] for Stanley coefficients.

To state our formula, we need the 0-Hecke monoid, which is the quotient of the
free monoid of all finite words in the alphabet {1, 2, . . . } by the relations

p p ≡ p for all p(2)

p q p ≡ q p q for all p, q(3)

p q ≡ q p for |p − q| ≥ 2.(4)

There is a bijection between the 0-Hecke monoid and the infinite symmetric group
S∞ =

⋃
n≥1 Sn. Given any word a there is a unique permutation π ∈ S∞ such

that a ≡ b for some (equivalently every) reduced word b of π. In this case we write
w(a) = π and say that a is a Hecke word for π. Notice that the reduced words
for π are precisely the Hecke words for π that are of minimum length. Given an
additional permutation ρ with Hecke word b, the Hecke product of π and ρ is defined
as the permutation π · ρ = w(ab).

We use the English notation for partitions and tableaux. An increasing tableau is
a Young tableau whose rows increase strictly from left to right, and whose columns
increase strictly from top to bottom. A decreasing tableau is defined similarly. The
(column reading) word of a tableau T , denoted word(T ), is obtained by reading
the columns of the tableau from bottom to top, starting with the leftmost column,
followed by the column to its right, etc. We also define w(T ) := w(word(T )).

Our main theorem gives the explicit expansion of the stable Grothendieck poly-
nomial Gπ in terms of the Gλ.

Theorem 1. For any permutation π ∈ S∞, the coefficient cπ,λ in (1) is equal to

(−1)|λ|−`(π) times the number of increasing tableaux T of shape λ such that word(T )
is a Hecke word for π−1.

Example 1. Consider π = 31524 = s2s1s4s3, where each si is a simple transposi-
tion. The increasing tableaux that provide Hecke words for π−1 are:

1 2
3 4

1 2 4
3

1 2 4
3 4

Hence Gπ = G22 + G31 − G32.

Theorem 1 may be used to give self-contained proofs of a number of known
results. For example, the finiteness of the expansion (1) proved in [3] follows im-
mediately from Theorem 1. When the permutation π is 321-avoiding, Theorem 1
furthermore generalizes Buch’s rule for the coefficients cπ,λ in terms of set-valued
tableaux [3], in the sense that there is an explicit bijection between the relevant
increasing and set-valued tableaux. As a consequence, we obtain a new proof of
the set-valued Littlewood-Richardson rule for the Schubert structure constants in
the K-theory of Grassmannians, as well as an alternative rule based on increasing
tableaux. This is explained in Section 3.5.

1.2. Hecke insertion. Fomin and Kirillov proved that the monomial coefficients
of (stable) Grothendieck polynomials are counted by combinatorial objects called
compatible pairs (also known as resolved wiring diagrams, FK-graphs, pipe dreams,
or nonreduced RC-graphs) [14, 13]. This formula was used in [3] to express the
monomial coefficients of stable Grothendieck polynomials for partitions in terms
of set-valued tableaux (see equation (8)). We prove Theorem 1 by exhibiting an
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explicit bijection between the set of compatible pairs for a permutation π and the
set of pairs (T,U) where T is an increasing tableau with w(T ) = π−1 and U is a
set-valued tableau of the same shape as T . This bijection is constructed using a
new combinatorial algorithm called Hecke insertion, which is the technical core of
our paper.

Hecke insertion is a generalization of the Edelman-Greene insertion algorithm
[10] (also known as Coxeter-Knuth insertion) from the set of reduced words to the
set of all (Hecke) words. It specializes to Robinson-Schensted insertion for words of
distinct integers [21, 22]. There are two main novelties in our extension. First, we
need an operation that “jumps” many columns at once. Second, an accompanying
reverse insertion algorithm can pass back different intermediate values than the
insertion algorithm generated. Neither of these elements appear in the classical
algorithms. We also use Hecke insertion to define products of decreasing tableaux,
which enter into our definition of K-theoretic factor sequences.

1.3. Quiver varieties. Our main application of Theorem 1 concerns the classes
of quiver varieties in K-theory. Recall that a sequence of vector bundle morphisms
E0 → E1 → · · · → En over a non-singular variety X together with a set of rank
conditions r = {rij} for 0 ≤ i ≤ j ≤ n define a quiver variety Ωr ⊂ X of points
where each composition of bundle maps Ei → Ej has rank at most rij . We demand
that the rank conditions can actually occur, and that the bundle maps are generic,
so that the quiver variety Ωr obtains its expected codimension d(r) =

∑
i<j(ri,j−1−

rij)(ri+1,j − rij). Buch and Fulton proved a formula for the cohomology class of
Ωr [6], which was later generalized to K-theory by Buch [2]. The K-theory version
states that the Grothendieck class of Ωr is given by

(5) [OΩr
] =

∑

µ

cµ(r)Gµ1
(E1 − E0)Gµ2

(E2 − E1) · · ·Gµn
(En − En−1) ,

where the sum is over sequences µ = (µ1, . . . , µn) of partitions µi such that
∑

|µi| ≥
d(r) and each partition µi can be contained in the rectangle ei × ei−1 with ei rows
and ei−1 columns, where ei := rii = rank(Ei). The notation Gµi

(Ei+1 − Ei) will
be explained in Section 2.

The coefficients cµ(r) in formula (5) are integers called quiver coefficients. When∑
|µi| = d(r), the coefficient cµ(r) also appears in the cohomology formula from [6]

and is called a cohomological quiver coefficient. A precise conjecture for these coho-
mological coefficients was posed in [6], which asserts that cµ(r) counts the number
of factor sequences of tableaux with shapes given by the sequence of partitions µ.
A factor sequence is a sequence of semistandard Young tableaux that can be ob-
tained by performing a series of plactic factorizations and multiplications of chosen
tableaux arranged in a tableau diagram. For a specific choice of tableau diagram,
this conjecture was proved by Knutson, Miller and Shimozono [16]. However, the
original definition of factor sequences from [6] as sequences of tableaux generated
using the plactic product has no known generalization to K-theory.

In this paper, we prove that K-theoretic quiver coefficients are counted by a new
type of factor sequence, generalizing the cohomological factor sequences defined by
Buch in [4] using the Coxeter-Knuth product of tableaux. The new K-theoretic
factor sequences are constructed from a tableau diagram of decreasing1 tableaux

1The combinatorics of these factor sequences naturally requires decreasing rather than increas-

ing tableaux.
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using the same algorithm that defines the original factor sequences, except that the
plactic product is replaced with a product (U, T ) 7→ U · T of decreasing tableaux
which is compatible with Hecke products of permutations (see Section 3.7).

For each 0 ≤ i < j ≤ n let Rij be a rectangle with ri+1,j−rij rows and ri,j−1−rij

columns. Let Uij be the unique decreasing tableau of shape Rij such that the lower
left box contains the number ri,j−1, and the number in each box is one larger than
the number below it and one smaller than the number to the left of it. For example,
if ri,j−1 = 6, ri+1,j = 5, and rij = 2 then

Uij =
8 7 6 5
7 6 5 4
6 5 4 3

.

These tableaux Uij can be arranged in a triangular tableau diagram as in [6, §4]:

U01 U12 · · · Un−1,n

U02 · · · Un−2,n

. . .

U0n

We define a K-theoretic factor sequence for the rank conditions r by induction
on n. If n = 1 then the only factor sequence is the sequence (U01) consisting of the
only tableau in the tableau diagram. If n ≥ 2 then the numbers r = {rij : 0 ≤ i ≤
j ≤ n−1} defined by rij = ri,j+1 form a valid set of rank conditions corresponding
to a sequence of n − 1 bundle maps. In this case, a factor sequence for r is any
sequence of the form (U01 ·A1, . . . , Bi−1 ·Ui−1,i ·Ai, · · · , Bn−1 ·Un−1,n), for a choice
of decreasing tableaux Ai and Bi such that (A1 · B1, . . . , An−1 · Bn−1) is a factor
sequence for r.

Theorem 2. The K-theoretic quiver coefficient cµ(r) is equal to (−1)
P

|µi|−d(r)

times the number of K-theoretic factor sequences (T1, . . . , Tn) for the rank condi-
tions r, such that Ti has shape µi for each i.

Central to the proof of the nonnegativity of cohomological quiver coefficients
given in [16] is the stable component formula, which writes the cohomology class
of a quiver variety as a sum of products of Stanley functions. This sum is over all
lace diagrams representing the rank conditions r, which have the smallest possible
number of crossings. The K-theoretic version of the component formula from [4, 20]
states that

(6) [OΩr
] =

∑

(π1,...,πn)

(−1)
P

`(πi)−d(r)Gπ1
(E1 − E0) · · ·Gπn

(En − En−1)

where the sum is over a generalization of minimal lace diagrams, which was named
KMS-factorizations in [4]. We recall this definition in Section 4. Our proof of
Theorem 2 is based on Theorem 1, equation (6), and the following characterization
of the K-theoretic factor sequences:

Theorem 3. A sequence of decreasing tableaux (T1, . . . , Tn) is a K-theoretic factor
sequence for the rank conditions r if and only if (w(T1), . . . , w(Tn)) is a KMS-
factorization for r.
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1.4. Outline of the paper. We give a brief overview of the contents of this article.
In Section 2 we recall the original definitions of Grothendieck polynomials and
stable Grothendieck polynomials, and record two useful monomial expansions for
the latter. In Section 3 we define the Hecke insertion algorithm, establish its basic
properties, give the proof of Theorem 1, and apply it to reprove the set-valued
Littlewood-Richardson rule from [3]. We also give an algorithm for generating all
increasing tableaux which represent a given permutation. Finally, our applications
to quiver coefficients and factor sequences are contained in Section 4. These include
a proof that the K-theoretic quiver coefficients are special cases of the coefficients
cz(r),λ in the expansion (1) of the stable Grothendieck polynomial for a Zelevinsky
permutation z(r) (Theorem 6), and a new formula for the decomposition coefficients
of universal Grothendieck polynomials (Theorem 7).

2. Grothendieck polynomials

Grothendieck polynomials were introduced by Lascoux and Schützenberger [19]
as polynomial representatives for the classes of structure sheaves of Schubert va-
rieties in the K-theory of the flag variety for GLn. Let X = (x1, x2, . . .) and
Y = (y1, y2, . . .) be two sequences of commuting independent variables and π ∈ Sn.
If π = π0 is the longest permutation in Sn, then we set

Gπ0
(X;Y ) =

∏

i+j≤n

(xi + yj − xiyj) .

If π 6= π0, we can find a simple transposition si = (i, i + 1) ∈ Sn such that
`(πsi) = `(π) + 1. We then define

Gπ(X;Y ) =
(1 − xi+1)Gπsi

(X;Y ) − (1 − xi)Gπsi
(x1, . . . , xi+1, xi, . . . , xn;Y )

xi − xi+1
.

For π ∈ S∞ and r ≥ 0, let 1r × π ∈ S∞ denote the permutation obtained by
putting r fixed points in front of π, that is, 1r × π = ρ where ρ(i) = i for 1 ≤ i ≤ r
and ρ(i) = π(i − r) + r for i > r. The stable Grothendieck polynomial Gπ(X;Y ) is
the formal power series, symmetric in the X and Y variables separately, defined by

Gπ(X;Y ) = lim
r→∞

G1r×π(X;Y ) .

Given vector bundles E = L1 ⊕ · · · ⊕ Lp and F = M1 ⊕ · · · ⊕ Mq over a variety X

which are direct sums of line bundles, we write

Gλ(E − F ) = Gλ(1 − L−1
1 , . . . , 1 − L−1

p ; 1 − M1, . . . , 1 − Mq) ∈ K(X) .

The symmetry of Gλ(X;Y ) implies that this is a polynomial in the exterior powers
of E∨ and F . Therefore Gλ(E −F ) makes sense even for bundles that are not split
into direct sums of line bundles. This explains the notation used in (5).

We will be mostly interested in the specialization Gπ = Gπ(X; 0). We recall
Fomin and Kirillov’s combinatorial construction of these polynomials [13], using
notation which generalizes Billey, Jockusch, and Stanley’s formula for Schubert
polynomials [1]. Define a compatible pair to be a pair (a, i) of words a = a1a2 · · · ap

and i = i1i2 · · · ip of positive integers, such that i1 ≤ i2 ≤ · · · ≤ ip, and so that
aj > aj+1 whenever ij = ij+1. The stable Grothendieck polynomial for π ∈ S∞ is
then given by [13]

(7) Gπ =
∑

(a,i)

(−1)`(i)−`(π) xi
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where the sum is over all compatible pairs (a, i) such that w(a) = π. Here `(i) is
the common length of a and i, and xi = xi1xi2 · · ·xi`(i)

.
A set-valued tableau of shape λ is a filling of the boxes of the Young diagram

of λ with finite nonempty sets of positive integers, such that these sets are weakly
increasing along rows and strictly increasing down columns. In other words, all
integers in a box must be smaller than or equal to the integers in the box to the
right of it, and strictly smaller than the integers in the box below it. For a set-
valued tableau S, let xS denote the monomial where the exponent of xi is equal
to the number of boxes containing the integer i, and let |S| be the degree of this
monomial. Buch’s formula for the monomial expansion of Gλ is given by [3]

(8) Gλ =
∑

S

(−1)|S|−|λ| xS

where S runs over all set-valued tableaux of shape λ.

3. Hecke Insertion and the proof of Theorem 1

In view of (7) and (8), to prove Theorem 1 it suffices to establish a bijection
(a, i) 7→ (T,U) between all compatible pairs (a, i) such that w(a) = π, and all pairs
of tableaux (T,U) of the same shape, such that T is increasing with w(T ) = π−1

and U is set-valued. In addition, this bijection must satisfy xU = xi. To construct
this bijection, we need a new algorithm called Hecke insertion.

3.1. Hecke insertion. We shall define the Hecke (column) insertion of a non-
negative integer x into the increasing tableau Y , resulting in the increasing tableau
Z. The shape of Z always contains the shape of Y , and contains at most one
extra box c. Unlike ordinary Robinson-Schensted insertion, it is possible that Z
has the same shape as Y , but even in this case it will contain a special corner c
where the insertion algorithm terminated. To keep track of these cases, we will
use a parameter α ∈ {0, 1}, which is set to 1 if and only if the corner c is outside
the shape of Y . Thus the complete output of the insertion algorithm is the triple

(Z, c, α). We will use the notation Z = (x
H
−→ Y ).

The algorithm proceeds by inserting the integer x into the first column of Y .
This may modify this column, and possibly produce an output integer, which is
then inserted into the second column of Y , etc. This process is repeated until
an insertion does not produce an output integer. The procedure for inserting an
integer x into a column C is as follows.

If x is larger than or equal to all boxes of C, then no new output value is produced
and the algorithm terminates. If adjoining x as a new box below C results in an
increasing tableau, then Z is the resulting tableau, α = 1, and c is the new corner
where x was added. If x cannot be added, then no further modifications are carried
out to produce Z, α = 0, and c is the corner of the row of Z containing the bottom
box of the column C.

Otherwise C contains boxes strictly larger than x, and we let y be the smallest
such box. If replacing y with x results in an increasing tableau, then this is done.
In either case, y is the output integer, which is inserted into the next column.
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Example 2.

3
H
−→

1 2 3 4
2 5 6
3
5

=

1 2 3 4
2 5 6
3
5

The integer 3 is inserted into the first column, which contains 3. So 5 is inserted
into the second column, whose largest value is 5. The algorithm terminates with
α = 0, and c = (2, 3) is the corner in the second row and third column.

Example 3.

2
H
−→

1 2
2 5
4

=
1 2 5
2 4
4

The integer 2 is inserted into the first column, which contains 2. So 4 is inserted
into the second column, displacing the 5. The 5 is inserted into the third column,
where it comes to rest. We get α = 1 and c = (1, 3).

Example 4.

2
H
−→

1 2 3 5
2 3 4
4

=
1 2 3 5
2 3 4
4

The integer 2 is inserted into the first column, which contains a 2. So 4 is inserted
into the second column, which has largest entry 3. Since the first column still
contains the value 4 in its bottom box, it is not possible to add a box with 4 to the
second column. We obtain α = 0, and c = (2, 3) is the corner of the second row.

Example 5.

1
H
−→ 1 2 3

3 4 5
= 1 2 3 5

3 4 5
The integer 1 is inserted into the first column, which already contains a 1. So 3 is
inserted into the second column. It would have replaced 4, but this replacement
would place a 3 directly to the right of another 3, violating the increasing tableau
condition. So the second column is unchanged and 4 is inserted into the third
column. Similarly 4 cannot replace 5, so 5 is inserted into the fourth column,
where it comes to rest in the cell c = (1, 4) with α = 1.

3.2. Reverse Hecke insertion. Let Z be an increasing tableau, c a corner of Z,
and α ∈ {0, 1}. Reverse Hecke insertion applied to the triple (Z, c, α) produces a
pair (Y, x) of an increasing tableau Y and a positive integer x as follows. Let y be
the integer in the cell c of Z. If α = 1 then remove y. In any case, reverse insert y
into the column to the left of the corner c.

Whenever a value y is reverse inserted into a column C, let x be the largest entry
of C such that x < y. If replacing x with y results in an increasing tableau, then
this is done. In any case, the integer x is passed along to the left. If C is not the
left-most column, this means that x is reverse inserted into the column left of C;
otherwise x becomes the final output value, along with the modified tableau.

Example 6. Let us apply reverse Hecke insertion to the tableau computed in
Example 5 at the cell c = (1, 4) with α = 1. The integer 5 in this cell is then
removed, and 5 is reverse inserted into the third column. Since 5 is already in the
third column, it is not changed, and 3 is reverse inserted into the second column.
Here 3 cannot replace 2 because this would place a 3 directly to the left of a 3. The
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second column is unchanged and 2 is reverse inserted into the first column. The 2
cannot replace 1 for the same reason, so the first column is unchanged and x = 1
is the output value. This recovers the initial tableau of Example 5.

Let I denote the set of pairs (Y, x) where Y is an increasing tableau and x is
a positive integer. Let R be the set of triples (Z, c, α) where Z is an increasing
tableau, c a corner cell of Z, and α ∈ {0, 1}.

Theorem 4. Hecke insertion (Y, x) 7→ (Z, c, α) and reverse Hecke insertion (Z, c, α)
7→ (Y, x) define mutually inverse bijections between the sets I and R.

Proof. Assume at first that (Z, c, α) has been obtained by applying Hecke insertion
to (Y, x). We must show that reverse Hecke insertion recovers (Y, x) from (Z, c, α).
This is clear if Y is the empty tableau. In general we proceed by induction on the
number of columns in Y .

If x is strictly larger than all the integers in the first column of Y , then Z is
obtained by adding a box containing x to the first column of Y , c is this box, α = 1,
and reverse Hecke insertion clearly maps (Z, c, α) back to (Y, x). If x is equal to the
largest integer in the first column of Y , then Z = Y , α = 0, and c is the leftmost
corner of Y . Also in this case it is easy to see that reverse Hecke insertion applied
to (Z, c, α) recovers (Y, x).

We can therefore assume that the first column of Y contains at least one integer
that is strictly larger than x. We let Y ′ denote the first column of Y and let Y ′′

be the rest of Y . We define Z ′ and Z ′′ similarly, and we regard c as a corner of
both Z and of Z ′′. Let a be the smallest box of Y ′ for which x < a. If (Z ′′, c, α) is
the result of applying Hecke insertion to (Y ′′, a), then we know by induction that
reverse Hecke insertion applied to (Z, c, α) first recovers Y ′′ from Z ′′, after which
a is reverse inserted into Z ′. If the box of Y ′ containing a was replaced with x in
the construction of Z ′, then the reverse insertion puts a back in this box to recover
Y ′, and the output value of the reverse insertion is x. If the box of Y ′ containing a
was not changed to x when Z ′ was formed, then Z ′ = Y ′ must contain x in the box
immediately over a. Reverse inserting a therefore leaves Z ′ unchanged, and gives
x as the output value, as required.

It remains to consider the case when Z ′′ differs from the tableau (a
H
−→ Y ′′).

This can only happen if the box of Y ′ containing a was not replaced with x, and if

the leftmost box in the same row of (a
H
−→ Y ′′) contains a. Let b be the largest box

of the first column of Y ′′ for which b ≤ a, and observe that (Z ′′, c, α) must be the
result of applying Hecke insertion to (b, Y ′′). It therefore follows by induction that
reverse Hecke insertion applied to (Z, c, α) first recovers Y ′′ from Z ′′, after which b
is reverse inserted into Z ′ = Y ′. Finally, notice that Y ′ must contain x in the box
above the box containing a, since otherwise a would have been replaced with x in
the initial Hecke insertion. Furthermore we have x < b, since b is in the box of Y ′′

to the right of x in Y ′. Since x < b ≤ a, we conclude that reverse insertion of b
to Y ′ leaves this column unchanged, and x is the final output value, as required.
This verifies that Hecke insertion followed by reverse Hecke insertion is the identity
map.

To finish the proof, assume that (Y, x) has been obtained by applying reverse
Hecke insertion to (Z, c, α). We must show that Hecke insertion maps (Y, x) back
to (Z, c, α). This is easily checked if c is the corner of the bottom row of Z. In
general we use induction on the number of columns in Z. Assume that c is not in
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the bottom row of Z, and let Y ′, Y ′′, Z ′, and Z ′′ be defined as above. We know
that for some integer a, the pair (Y ′′, a) is the result of applying reverse Hecke
insertion to (Z ′′, c, α). We also know that Y ′ is obtained by reverse inserting a into
Z ′, keeping in mind that Y ′′ resides to the right, and x is the output value resulting
from this insertion.

We first prove that Y ′ contains integers strictly larger than x. In fact, if this
was not true, then x would be equal to the bottom box of Y ′ = Z ′. Since a did
not replace x in Z ′, we deduce that Z ′ and Y ′′ have equally many rows, and a is
the content of the bottom-left box of Y ′′. On the other hand, since c is not in the
bottom row of Z ′′, it follows by induction on the number of columns of Z that the
first column of Y ′′ contains integers strictly larger than a, a contradiction.

If the box of Z ′ containing x is replaced by a in Y ′, then Hecke insertion applied
to (Y, x) first restores Z ′ in the first column, after which a is inserted into the first
column of Y ′′. Since we know by induction that (Z ′′, c, α) is the result of applying
Hecke insertion to (a, Y ′′), we deduce that Hecke insertion maps (Y, a) to (Z, c, α),
as required.

Finally assume that Y ′ = Z ′, i.e. x is not replaced by a. Since Y ′ contains
integers strictly larger than x, we know that x is not in the bottom box of Y ′.
Let y be the integer in the box of Y ′ just under x. When x is Hecke inserted into
Y ′ = Z ′, this column is not changed, and y is inserted into Y ′′. If y = a, then we
know by induction that this recovers (Z ′′, c, α). Otherwise we must have y > a,
and a must be contained in the box in the first column of Y ′′ which is in the same
row as the box containing x in Y ′. In this case Hecke insertion of y into Y ′′ with Z ′

to the left will produce the same result as Hecke inserting a into Y ′′ with nothing
to the left, namely (Z ′′, c, α). This verifies that reverse Hecke insertion followed by
Hecke insertion is the identity map, which completes the proof. ¤

3.3. Properties of Hecke insertion. We will need two additional properties of
Hecke insertion. The first property says that Hecke insertion respects Hecke words.

Lemma 1. Let Y be an increasing tableau, x a positive integer, and set Z = (x
H
−→

Y ). Then word(Z) ≡ x word(Y ).

Proof. It is easiest to check that reverse Hecke insertion preserves Hecke words. It
is enough to consider the following situation. Let C be a column, y a number that
is reverse inserted into C, U the modified tableau to the right of C from which y
comes, C ′ the modification of C, and x the output value. We must show that

word(C) y word(U) ≡ x word(C ′) word(U) .

If x is replaced by y in C then we have word(C) y ≡ x word(C ′) by the relations
(4). If x is not replaced because y is immediately below x in C, then word(C) y ≡
x word(C ′) holds by the relations (3) and (4).

Finally, assume that x is not replaced by y in C because the box of C containing
x is just left of a box in U containing y. In this case we show that word(C) =
word(C ′) ≡ x word(C ′) and y word(U) ≡ word(U). If x is contained in the bottom
box of C, then the first relation follows from (2). Otherwise let z be the box just
under x in C. Since we must have x < y < z, the relation word(C ′) ≡ x word(C ′)
follows from (2) and (4). Similarly, if the first column of U contains an integer w
in a box just below y, then y < z < w, and (2) and (4) imply that y word(U) ≡
word(U). ¤
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We also need the following ‘Pieri property’ of Hecke insertion.

Lemma 2. Let Y be an increasing tableau, and x1, x2 two positive integers. Suppose
that Hecke insertion of x1 into Y results in (Z, c1, α1) and that Hecke insertion of
x2 into Z results in (T, c2, α2). Then c2 is strictly to the right of c1 if and only if
x1 > x2.

Proof. As in the proof of Lemma 1, it is easier to work with reverse Hecke insertion.
We consider x2 as the output value obtained from applying reverse Hecke insertion
to T starting at the corner c2, and x1 as the output value obtained by applying
reverse insertion to the corner c1 of the result. We first consider the case that c2 is
strictly to the right of c1.

Suppose c1 is in the first column of T . If the path of the first reverse insertion
went through c1, then the number in c1 became larger, so the lemma holds. If the
first insertion path went above c1, then clearly the lemma also holds.

Consider T as split vertically into the subtableau of columns weakly to the right
of c1 and the subtableau of columns strictly to the left. The above observations
imply that it is enough to prove the following: Let y2 < y1 and assume y2 is
first reverse inserted into a column C, and then y1 is reverse inserted into the
modification of C, then the first output value is strictly smaller than the second.

The first output value x is the bottom-most entry in C which is strictly smaller
than y2. If the first reverse insertion replaces x by y2 or if the box below x contains
y2, then the second reverse insertion produces an output value which is greater than
or equal to y2.

Finally assume that when the first reverse insertion occurs, y2 is contained in a
box just to the right of the box of C containing x. In this case y1 must reside in a
box below y2 in the column to the right of C, which implies that the second output
value will come from a box below x in C, and thus be strictly larger than x.

Now we consider the case when c2 is further to the left or in the same column as
c1. We must show that the first output value is larger than or equal to the second.
If c2 is in the first column then this is clear. The first output value is the largest
entry in the first column. After the reverse insertion from c2, the second output
value must come from the first column, all of whose entries are smaller than or
equal to the first output value.

For reasons similar to those of the previous case, we need to show the following:
suppose y2 ≥ y1 and that y2 is reverse inserted into a column C, and then y1 is
reverse inserted into the modification of C, then the first output value is larger than
or equal to the second.

The first output value x is the bottom-most entry of C that is strictly smaller
than y2. If x is replaced by y2, then the bottom-most entry of the modified column
which is strictly smaller than y1 must be located above the current location of y2.
And this entry is still smaller than x.

Suppose x is not replaced by y2. In this case, the bottom-most entry that is
strictly smaller than y1 is either x or something above x. In both cases, the second
output value is less than or equal to x. ¤

3.4. Proof of Theorem 1. Recall from the discussion at the beginning of Section 3
that to prove Theorem 1, it suffices to exhibit a bijection (a, i) 7→ (T,U) where (a, i)
is a compatible pair with w(a) = π, T is an increasing tableau with w(T ) = π−1,
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and U is a set-valued tableau of the same shape as T . Moreover this bijection must
satisfy xi = xU .

Let (a, i) be as above with a = a1 · · · ap and i = i1 · · · ip. We start with the
empty tableau pair (T0, U0) = (∅, ∅). If (Tj−1, Uj−1) has been defined for some
j ≥ 1, let (Tj , cj , αj) be the result of Hecke inserting aj into Tj−1. If αj = 1 then
Uj is obtained from Uj−1 by adding the corner cj and putting the singleton set {ij}
in this box. Otherwise cj is already a corner of Uj−1, and Uj is obtained by putting
ij into the existing set in this corner of Uj−1. We finally set (T,U) = (Tp, Up).

The map (a, i) 7→ (T,U) has the desired properties. U is a set-valued tableau by
Lemma 2 and xi = xU by definition. The fact that w(T ) = π−1 follows from Lemma
1, combined with the fact that the reversal of words gives a bijection between the
Hecke words for π and those for π−1.

Finally, for j ≥ 1 we note that ij is the largest integer appearing in Uj , and cj

is the (unique) rightmost corner of Uj containing this integer. If this corner of Uj

contains only a singleton, then αj = 1, and Uj−1 can be obtained by removing the
box cj from Uj . Otherwise we have αj = 0 and Uj−1 is obtained by removing the
integer ij from the box cj of Uj . Since the pair (Tj−1, aj) is the result of applying
reverse Hecke insertion to the triple (Tj , cj , αj), this shows that the integers ij and
aj and the pair (Tj−1, Uj−1) can be recovered from (Tj , Uj). Repetition of this
procedure provides an inverse map (T,U) 7→ (a, i). This completes the proof of
Theorem 1.

Example 7. Let (a, i) be the compatible pair given by a = 41443 and i = 11244.
Then the above proof constructs the following sequence of tableau pairs (Tj , Uj).

( 4 , 1 ) , ( 1 4 , 1 1 ) ,

(
1 4
4

, 1 1
2

)
,

(
1 4
4

, 1 1
24

)
,

(
1 4
3

, 1 14
24

)

3.5. Increasing tableaux and set-valued tableaux. In this section we sketch
how to recover the set-valued Littlewood-Richardson rule of [3] from Theorem 1.

A compatible pair (a, i) can be identified with a diagram of columns of boxes
containing positive integers, which increase strictly from top to bottom. The boxes
of column p contain the integers aj for which ij = p. Some of the columns may
be empty. For example, the compatible pair from Example 7 is represented by the
diagram:

1 4 3
4 4

Let λ/µ be the skew Young diagram between two partitions λ and µ. If we
let πλ and πµ be the corresponding Grassmannian permutations with descent at
the same position k, then the 321-avoiding permutation corresponding to the skew
shape λ/µ is given by πλ/µ = πλ π−1

µ (see [1]). It was shown in [3, Thm. 3.1] that
the stable Grothendieck polynomial Gλ/µ := Gπλ/µ

can be written as the sum

Gλ/µ =
∑

S

(−1)|S|−|λ/µ|xS

over all set-valued tableaux S of shape λ/µ. The proof is based on a bijection
between set-valued tableaux and monomials equivalent to compatible pairs (see op.
cit. for more details).

Given an integer n such that πλ/µ ∈ Sn, we can formulate this as a bijection
between set-valued tableaux of shape λ/µ and (diagrams of) compatible pairs (a, i)
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with w(a) = π0π
−1
λ/µπ0, where π0 is the longest permutation in Sn. Number the

north-west to south-east diagonals of λ (and µ) consecutively from right to left,
so that the upper-left box of λ is in diagonal number n − k. Then the set-valued
tableau S of shape λ/µ is mapped to the diagram in which column p consists of
the diagonal numbers of the boxes of S that contain the integer p.

Example 8. If n − k = 4, then the bijection makes the assignments

1 23
1224

2 36 7
7→

2 1 1 3 5 4
4 3 5

4
6

and
1 1

12 2
12 3 3

7→

1 3 4
2 4 5
4 6
6

.

Recall that the column reading word of a set-valued tableau is obtained by
reading its boxes from bottom to top and then left to right. The integers of each
box are arranged in increasing order. The set-valued tableaux in Example 8 have
column reading words 2 3 6 1 2 7 2 4 1 2 3 and 1 2 3 1 2 3 2 1 1. Recall also that a word
is a reverse lattice word if every occurrence of an integer i with i > 1 is followed
by more i− 1’s than i’s. The content of a word is the integer sequence (ν1, ν2, . . . )
where νi is the number of occurrences of i in the word. The following lemma says
that the condition that the diagram of a compatible pair is an increasing tableau
naturally generalizes the condition that the reading word of a tableau is a reverse
lattice word.

Lemma 3. If the set-valued tableau S is mapped to the diagram T , then the column
reading word of S is a reverse lattice word if and only if T is an increasing tableau.

Proof. Consider an integer i > 1 contained in some box B of S. The lemma follows
from the observation that all occurrences of i and i − 1 that follow the integers of
B in the column reading word of S have diagonal numbers that are strictly smaller
than the diagonal number of B, and all other occurrences of i and i−1 have diagonal
numbers that are larger than or equal to the diagonal number of B. ¤

Corollary 1 (Theorem 6.9 of [3]). The coefficient cπλ/µ,ν is equal to the number

of set-valued tableaux S of shape λ/µ such that the column reading word of S is a
reverse lattice word with content ν.

Proof. Notice that if the set-valued tableau S is mapped to the diagram T , then
the content of S is the list of column lengths of T . The number of set-valued
tableau S of the corollary is therefore equal to the number of increasing tableaux
T of shape conjugate to ν such that w(T ) = π0π

−1
λ/µπ0, which by Theorem 1 equals

cπ0πλ/µπ0,ν′ = cπλ/µ,ν (see [3, Lemma 3.4]). ¤

3.6. Generating increasing tableaux. For practical applications of Theorem 1,
it is desirable to have an efficient algorithm for generating all increasing tableaux
which represent a given permutation. We will address the following slightly more
general problem.

Problem. Given a column C0 of boxes containing integers that increase from top
to bottom and a permutation π ∈ S∞, find all increasing tableaux T such that
w(T ) = π and so that T can be attached to the right hand side of C0 to form a
larger increasing tableau.
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We can generate the solutions to this problem as follows. First we find all
pairs (C, σ) consisting of an increasing column C and a permutation σ, such that
π = w(C) · σ and C can be attached to the right hand side of C0. For each such
pair we recursively find all increasing tableaux T ′ for which w(T ′) = σ and T ′ can
be attached to the right side of C, thus forming one of the solutions T . Notice that
it is sufficient to consider pairs (C, σ) such that σ(i) = i for the smallest integer i
for which π(i) > i. Furthermore, these pairs can be generated very quickly.

However, the algorithm in its present form is not efficient, because in many
cases there are no increasing tableaux T satisfying the stated conditions, and it
may require many recursive applications of the algorithm to discover this. We will
fix this problem by describing an easy way to decide up front if at least one solution
T exists.

Stanley has proved [23] that the Schur expansion of his symmetric function Fπ−1

contains two special terms, each with coefficient one, which are indexed by partitions
that are minimal and maximal in the dominance order among partitions occurring
in Fπ−1 . Accordingly, there is exactly one increasing tableau representing π on each
of these shapes. Let Mπ be the unique increasing tableau of the maximal shape.
Then the integers i1 < i2 < · · · < ip in the top row of Mπ satisfy that each ik is the
largest descent position smaller than ik+1 of the permutation πsip

sip−1
· · · sik+1

(we
set ip+1 = ∞), and the permutation πsip

· · · si1 has no descent positions smaller
than i1. This characterizes the top row of Mπ, and the part of Mπ below this row
is equal to Mπsip ···si1

.
We leave it as an exercise for the reader to show that the integers of the first

column of Mπ are larger than the integers in the first column of any other increasing
tableau representing π. In other words, if w(T ) = π and the leftmost box of row
r in T contains the integer x, then either Mπ has fewer than r rows, or the first
integer in its r-th row is larger than or equal to x. This property of Mπ implies that
the set of solutions T to our problem is nonempty if and only if Mπ is a solution.
When this criterion is incorporated, our algorithm is fairly efficient.

3.7. Products of increasing tableaux. Given two increasing tableaux T1 and
T2, we let T1 · T2 denote the increasing tableau obtained by Hecke inserting the
word of T1 into T2. More precisely, if a1a2 · · · ap is the word of T1 then we define

T1 · T2 = (a1
H
−→ (a2

H
−→ (· · · (ap

H
−→ T2) · · · ))). When the concatenation of the

words of T1 and T2 is a reduced word of a permutation, this product agrees with the
Coxeter-Knuth product, which is known to be associative. Unfortunately our more
general product of increasing tableaux is not associative. We make the convention
that T1 · T2 · T3 means T1 · (T2 · T3).

Example 9. Let T1 = 1 , T2 = 1 5
4

, and T3 = 2 . Then

(T1 · T2) · T3 = 1 4 5
4

· 2 = 1 2 5
4

whereas

T1 · (T2 · T3) = 1 · 1 2
4 5

= 1 2 5
4 5

.

The product of increasing tableaux has the following properties, whose proofs
are straightforward from the definitions.
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Lemma 4. Let T and T ′ be increasing tableaux. Then we have

(1) w(T · T ′) = w(T ) · w(T ′).
(2) Suppose T is cut along a vertical line into Tleft and Tright. Then T =

Tleft · Tright.
(3) Suppose T is cut along a horizontal line into tableaux Tbottom and Ttop.

Then T = Tbottom · Ttop.

3.8. Decreasing tableaux. For our applications to K-theoretic factor sequences
in the next section, it is more natural to work with decreasing tableaux, which
by definition are Young tableaux with strictly decreasing rows and columns. By
regarding decreasing tableaux as increasing tableaux with the order of the natural
numbers inverted, we obtain well defined operations of Hecke insertion and products
of decreasing tableaux as in Sections 3.1 and 3.7. For example we have

5 3
4

·

6 3 1
4 2
3
2

=

6 4 3 1
5 3 2
4
2

If T is a decreasing tableau, we let w(T ) be the unique permutation that has
the column word of T as a Hecke word. Lemma 4 then remains true for products
of decreasing tableaux. In addition we have the following decreasing version of
Theorem 1.

Theorem 1′. For any permutation π, the coefficient cπ,λ of (1) equals (−1)|λ|−`(π)

times the number of decreasing tableaux T of shape λ such that w(T ) = π.

Proof. Let π ∈ Sn and let π0 ∈ Sn be the longest permutation. By replacing
each entry x in a tableau with n − x, we obtain a bijection between the decreas-
ing tableaux representing π and the increasing tableaux representing π0ππ0. The
theorem therefore follows from the identity Gπ0π−1π0

= Gπ. To prove this, we
recall from [3, Lemma 3.4] that Gπ0ππ0

(X;Y ) = Gπ(Y ;X), and then use the fact
that Gπ(Y ;X) = Gπ−1(X;Y ). The latter equality holds also in the non-stable
case, and may be derived from Fomin and Kirillov’s construction of Grothendieck
polynomials (see e.g. [14, Cor. 8.7]). ¤

4. Quiver coefficients

4.1. K-theoretic factor sequences. Let r = {rij} be a set of rank conditions
for 0 ≤ i ≤ j ≤ n, and set N = e0 + · · · + en where ei = rii. A result of
Zelevinsky shows that when the base variety X is a product of matrix spaces, the
quiver variety Ωr ⊂ X is isomorphic to a dense open subset of a Schubert variety
[24]. The Zelevinsky permutation corresponding to this Schubert variety was used
in [16] to prove the ratio formula for quiver varieties.

With the notation from [4], the Zelevinsky permutation can be constructed as a
product of permutations as follows (see [16, Prop. 1.6] for a different construction).
Extend the rank conditions r = {rij} by setting rij = ej + · · ·+ei for 0 ≤ j < i ≤ n.
Then define decreasing tableaux Uij as in the introduction, but for all 0 ≤ i < n
and 0 < j ≤ n. The corresponding permutations Wij = w(Uij) are given by

Wij(p) =





p + ri,j−1 − rij if rij < p ≤ ri+1,j

p − ri+1,j + rij if ri+1,j < p ≤ ri+1,j + ri,j−1 − rij

p otherwise.
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The Zelevinsky permutation can now be defined by z(r) =
∏n

j=1

∏n−1
i=0 Wij . The

descent positions of z(r) are contained in the set {rnj : 0 < j ≤ n}, and the descent
positions of z(r)−1 are contained in {ri0 : 0 ≤ i < n}.

For each 1 ≤ j ≤ n − 1 we set δj = WjjWj+1,j · · ·Wn−1,j ∈ SN . A KMS-
factorization for the rank conditions r is any sequence (π1, . . . , πn) of permutations
with πi ∈ Sei−1+ei

, such that the Zelevinsky permutation z(r) is equal to the Hecke
product

π1 · δ1 · π2 · δ2 · · · δn−1 · πn .

These sequences of permutations generalize the notion of a minimal lace diagram
from [16] and give the index set in the K-theoretic stable component formula (6)
from [4, 20].

While we have given the most interesting definition of K-theoretic factor se-
quences in the introduction, it will be convenient to redefine them here according
to Theorem 3, and recover the inductive definition of factor sequences in Section
1.3 as a consequence of Theorem 5.

We define a K-theoretic factor sequence for the rank conditions r to be any se-
quence (T1, . . . , Tn) of decreasing tableaux, such that (w(T1), . . . , w(Tn)) is a KMS-
factorization for r. With this definition, Theorem 2 is an immediate consequence
of Theorem 1 combined with the K-theoretic stable component formula (6). The
next result, proved in [4, Thm. 7], shows that KMS-factorizations can themselves
be defined as ‘factor sequences’. Recall the definition of r from Section 1.3.

Theorem 5. (a) If (π1, . . . , πn) is a KMS-factorization for r, then each permu-
tation πi has a reduced factorization πi = ρi−1 · Wi−1,i · σi with ρi−1 ∈ Sei−1

and
σi ∈ Sei

, such that ρ0 = σn = 1.
(b) Let σ1, ρ1, . . . , σn−1, ρn−1 be permutations with σi, ρi ∈ Sei

. Then the se-
quence (W01 · σ1, ρ1 · W12 · σ2, . . . , ρn−1 · Wn−1,n) is a KMS-factorization for r if
and only if (σ1 · ρ1, σ2 · ρ2, . . . , σn−1 · ρn−1) is a KMS-factorization for r.

We also need the following statement.

Lemma 5. Let T be any decreasing tableau such that w(T ) ∈ Sm, and for some
integers a, b < m we have w(T )(p) ≤ b for all a < p ≤ m. Then T contains the
rectangle R = (m − b) × (m − a) in its upper left corner. The upper-left box of R
equals m−1, and the boxes of R decrease by one for each step down or to the right.

Proof. After deleting the contents of some boxes of T , the permutation w(T ) be-
comes equal to the south-west to north-east (permutation) product of the simple
transpositions corresponding to the non-empty boxes in T . Since the integers in
all these boxes are smaller than m, the assumption that w(T )(m) ≤ b implies that
the top of the first column of T must contain the integers m− 1,m− 2, . . . , b. The
assumption that w(T )(m− 1) ≤ b then implies that the second column of T starts
with m − 2,m − 3, . . . , b − 1, etc. ¤

Let (T1, T2) 7→ T1 · T2 be the product of decreasing tableaux from Section 3.8.

Corollary 2. A sequence of decreasing tableaux (T1, . . . , Tn) is a K-theoretic factor
sequence for the rank conditions r if and only if there exist decreasing tableaux Ai, Bi

for 1 ≤ i ≤ n − 1, such that Ti = Bi−1 · Ui−1,i · Ai for each i (with B0 = An = ∅)
and (A1 · B1, . . . , An−1 · Bn−1) is a K-theoretic factor sequence for r.
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Proof. Let (T1, . . . , Tn) be a factor sequence for r and (π1, . . . , πn) the corresponding
KMS-factorization. It follows from Theorem 5 (a) that πi ∈ Sei−1+ei−ri−1,i

and that
πi(p) ≤ ei−1 for all ei < p ≤ ei−1 + ei − ri−1,i. Since Ti represents πi, Lemma 5
implies that Ti contains the tableau Ui−1,i in its upper-left corner. Now write
Ti = Bi−1 · Ui−1,i · Ai where Ai is the part of Ti to the right of Ui−1,i and Bi−1 is
the part below Ui−1,i and Ai.

Ti =

AiUi−1,i

Bi−1

Then we have πi = w(Bi−1) ·Wi−1,i ·w(Ai) by Lemma 4, and all entries of Ai and
Bi are smaller than ei. Since all descent positions of z(r) = π1 · δ1 · π2 · · · δn−1 · πn

are greater than or equal to en, the same must be true for πn, so An must be
empty. Similarly, since the descent positions of π−1

1 are greater than or equal to e0,
B0 is empty. Now it follows from Theorem 5 (b) that (w(A1) ·w(B1), . . . , w(An−1) ·
w(Bn−1)) is a KMS-factorization for r, or equivalently that (A1·B1, . . . , An−1·Bn−1)
is a factor sequence.

On the other hand, if we are given decreasing tableaux A1, B1, . . . , An−1, Bn−1

such that (A1 · B1, . . . , An−1 · Bn−1) is a factor sequence for r then Theorem 5 (a)
implies that the entries of Ai and Bi are smaller than ri−1,i + ri,i+1 − ri−1,i+1 ≤ ei,
so it follows from Theorem 5 (b) that (U01 · A1, B1 · U12 · A2, . . . , Bn−1 · Un−1,n) is
a factor sequence for r. ¤

This completes the proof of Theorems 2 and 3.

Example 10. Consider a sequence of vector bundles E0 → E1 → E2 → E3 of
ranks 1, 4, 3, 3 together with the rank conditions

r =





r00 r11 r22 r33

r01 r12 r23

r02 r13

r03





=





1 4 3 3
1 2 2

1 1
0





.

These rank conditions result in the following diagram of decreasing tableaux Uij :

∅ 4 3 3

∅ 2

1

The two bottom rows of this diagram produce the following three factor sequences
for the inductive rank conditions r:

( 1 , 2 ) ,

(
∅ , 2

1

)
,

(
1 , 2

1

)
.

Since the decreasing tableau 2
1

has the factorizations

2
1

= 2
1

· ∅ = 1 · 2 = ∅ · 2
1

= 2
1

· 2 = 1 · 2
1

and a single box has the factorizations x = x · ∅ = ∅ · x = x · x , the factor
sequences for r produce the following list of factor sequences for r:
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( 1 , 4 3 2 , 3 ) ,

(
1 , 4 3 , 3

2

)
,

(
∅, 4 3 2

1
, 3

)
,

(
∅, 4 3

1
, 3

2

)
,

(
∅, 4 3 1 , 3

2

)
,

(
∅, 4 3 ,

3
2
1

)
,

(
1 , 4 3 2

1
, 3

)
,

(
1 , 4 3

1
, 3

2

)
,

(
1 , 4 3 2 , 3

2

)
,

(
1 , 4 3 1 , 3

2

)
,

(
∅, 4 3 2

1
, 3

2

)
,

(
∅, 4 3 1

1
, 3

2

)
,

(
∅, 4 3 1 ,

3
2
1

)
,

(
1 , 4 3 ,

3
2
1

)
,

(
∅, 4 3

1
,

3
2
1

)
,

(
1 , 4 3 2

1
, 3

2

)
,

(
1 , 4 3 1

1
, 3

2

)
,

(
1 , 4 3 1 ,

3
2
1

)
,

(
∅, 4 3 1

1
,

3
2
1

)
,

(
1 , 4 3

1
,

3
2
1

)
,

(
1 , 4 3 1

1
,

3
2
1

)

These factor sequences can also be obtained by first working out the 13 possible
KMS-factorizations for r, for example by using Theorem 5 or the transformations
on KMS-factorizations given in [5, §5]. We conclude that the Grothendieck class of
the quiver variety Ωr(E•

) is obtained by replacing each tensor Gµ1
⊗Gµ2

⊗Gµ3
in

the following expression with the class Gµ1
(E1−E0) ·Gµ2

(E2−E1) ·Gµ3
(E3−E2):

G1 ⊗ G3 ⊗ G1 + G1 ⊗ G2 ⊗ G11 + 1 ⊗ G31 ⊗ G1 + 1 ⊗ G21 ⊗ G11

+ 1 ⊗ G3 ⊗ G11 + 1 ⊗ G2 ⊗ G111 − G1 ⊗ G31 ⊗ G1 − G1 ⊗ G21 ⊗ G11

− 2 · G1 ⊗ G3 ⊗ G11 − 2 · 1 ⊗ G31 ⊗ G11 − 1 ⊗ G3 ⊗ G111 − G1 ⊗ G2 ⊗ G111

− 1 ⊗ G21 ⊗ G111 + 2 · G1 ⊗ G31 ⊗ G11 + G1 ⊗ G3 ⊗ G111 + 1 ⊗ G31 ⊗ G111

+ G1 ⊗ G21 ⊗ G111 − G1 ⊗ G31 ⊗ G111 .

4.2. Grothendieck polynomials for Zelevinsky permutations. Using results
about Demazure characters it was proved in [16] that cohomological quiver coef-
ficients are special cases of the Stanley coefficients associated to the Zelevinsky
permutation z(r). As an application of our results, we will prove more generally
that the K-theoretic quiver coefficients are special cases of the coefficients cz(r),λ

in the expansion (1) of the stable Grothendieck polynomial for z(r). This result
also sharpens the fact from [4, 9] that quiver coefficients are special cases of the
decomposition coefficients of Grothendieck polynomials studied in [7] (see Section
4.3). Given a sequence of partitions µ = (µ1, . . . , µn) such that µi is contained in
the rectangle ei × ei−1, let λ(µ) be the partition obtained by concatenating the
partitions (e0 + e1 + · · · + ei−2)

ei + µi for i = n, n − 1, . . . , 1.

Theorem 6. For any set of rank conditions r and sequence of partitions µ we have
cµ(r) = cz(r),λ(µ).

Our proof of the above identity is based on a bijection between the K-theoretic
factor sequences for r and the decreasing tableaux representing z(r). Given a
sequence (T1, . . . , Tn) of decreasing tableaux, such that each tableau Ti can be
contained in the rectangle ei × ei−1 and all entries of Ti are smaller than ei−1 + ei,
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we let Φ(T1, . . . , Tn) denote the decreasing tableau constructed from this sequence
as well as the tableaux Uij for i ≥ j as follows.

Φ(T1, . . . , Tn) =

Un−1,3

T3U2,2

T2

Un−1,2Un−1,1

U2,1

U1,1

T1

Tn

Notice that the upper-left box of Un−1,1 is equal to N − 1, and the boxes in the
union of tableaux Uij decrease by one for each step down or to the right. Theorem 6
follows from the following proposition combined with Theorems 1 and 2.

Proposition 1. The map (T1, . . . , Tn) 7→ Φ(T1, . . . , Tn) gives a bijection of the
set of all K-theoretic factor sequences for r with the set of all decreasing tableaux
representing z(r).

Proof. Since the permutation of a decreasing tableau can be defined as the south-
west to north-east Hecke product of the simple reflections given by the boxes of the
tableau, it follows from the definition of KMS-factorizations that (T1, . . . , Tn) is a
factor sequence if and only if Φ(T1, . . . , Tn) represents the Zelevinsky permutation
z(r). It remains to show that any decreasing tableau T representing z(r) contains
the arrangement of rectangular tableaux Uij in its upper-left corner, and has no
boxes strictly south-east of the tableaux Uii for 1 ≤ i ≤ n− 1. The inclusion of the
tableaux Uij in T follows from Lemma 5 because z(r) ∈ SN and for each 0 < i < n
and p > rni we have z(r)(p) ≤ ri0, see [16, Prop 1.6] or [4, Lemma 3.1].

To see that T contains no boxes strictly south-east of Uii, we use that the
Grothendieck polynomial Gbz(r)(x1, . . . , xN ) is separately symmetric in each group

of variables {xp | rn,i < p ≤ rn,i−1}, where ẑ(r) = π
(N)
0 z(r)−1π

(N)
0 and π

(N)
0 is

the longest permutation in SN . This is true because the descent positions of ẑ(r)
are contained in the set {rnj | 0 < j ≤ n}, and Grothendieck polynomials Gw are
symmetric in the intervals of variables between the descent positions of w. It also
follows from the definition that in any monomial of Gw(x1, .., xN ) with w ∈ SN ,
the exponent of xi is at most N − i. We deduce that the exponent of xrni+1 in any
monomial of Gbz(r)(x1, . . . , xN ) is less than or equal to N − rn,i−1 = ri−2,0. Now
use the tableau T to construct a unique compatible pair (a, k) for ẑ(r), such that
T contains the integer p in some box of row q if and only if (al, kl) = (N − p, q) for
some l. Since this pair contributes the monomial xk to Gbz(r)(x1, . . . , xN ), it follows
that row rni +1 of T has at most ri−2,0 boxes. This means exactly that T contains
no boxes south-east of Ui−1,i−1, as required. ¤

Example 11. The Zelevinsky permutation for the rank conditions r of Example 10

is given by z(r) =

(
1 2 3 4 5 6 7 8 9 10 11
2 6 9 1 10 11 3 4 7 8 5

)
∈ S11. The decreas-

ing tableaux representing this permutation are obtained by attaching the factor
sequences for r to the bottom side, the middle corner, and the right side of the
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tableau
10 9 8 7 6
9 8 7 6 5
8 7 6 5 4
7
6
5

.

4.3. Universal Grothendieck polynomials. Fulton’s universal Schubert poly-
nomials [15] describe certain quiver varieties associated to a sequence of vector
bundles E1 → · · · → En−1 → En → Fn → Fn−1 → · · · → F1 over X, such that
rank(Ei) = rank(Fi) = i for each i. They are also known to specialize to, e.g., the
quantum Schubert polynomials [11], where a nonrecursive combinatorial formula
was given in [8]. We now describe an extension of this result to K-theory.

Given a permutation π ∈ Sn+1, we let Ωπ ⊂ X be the degeneracy locus of points
where the rank of each composed map Eq → Fp is at most equal to the number of
integers i ≤ p such that π(i) ≤ q. The quiver formula (5) can be applied to give a
formula

(9) [OΩπ
] =

∑

µ

c(n)
π,µ Gµ1

(E2 − E1) · · ·Gµn
(Fn − En) · · ·Gµ2n−1

(F1 − F2)

for the Grothendieck class of Ωπ, where the coefficients c
(n)
π,µ are special cases of

quiver coefficients. It was shown in [2] that the coefficients cπ,λ of the expansion (1)
of the stable Grothendieck polynomial for π can be obtained as the specializations

c
(n)
π,(∅n−1,λ,∅n−1), where ∅n−1 denotes a sequence of n − 1 empty partitions. More

generally, it was proved in [7, Thm. 4] that the coefficients c
(n)
π,λ can be used to

expand a double Grothendieck polynomial as a linear combination of products of
stable Grothendieck polynomials applied to disjoint intervals of variables. In [7],
the formula (9) was also used to prove that

[OΩπ
] =

∑
(−1)`(σ1···σ2n−1π)Gσ1

(E2 − E1) · · ·Gσn
(Fn − En) · · ·Gσ2n−1

(F1 − F2)

where this sum is over all sequences of permutations (σ1, . . . , σ2n−1) such that
σi ∈ Smin(i,2n−i)+1 and π is equal to the Hecke product σ1 ·σ2 · · ·σ2n−1. Combining
this with Theorem 1, we obtain the following generalization of [8, Thm. 1].

Theorem 7. The coefficient c
(n)
π,µ of (9) is equal to (−1)

P
|µi|−`(π) times the number

of sequences (T1, . . . , T2n−1) of increasing tableaux of shapes (µ1, . . . , µ2n−1), such
that the entries of Ti are at most min(i, 2n − i) and w(T2n−1 · · ·T2 · T1) = π−1.

Acknowledgments

We would like to thank S. Fomin, M. Haiman, A. Postnikov and J. Remmel for
helpful conversations. This work was partially completed while AB, MS and AY
were in residence together at the Park City Mathematics Institute, during the pro-
gram on “Geometric combinatorics” during July 2004. AK was partially supported
by an EPSRC Advanced Research Fellowship. MS was supported in part by NSF
grant DMS-0401012. HT was supported in part by NSF grant DMS-0401082. AY
thanks NSERC for providing support as a visitor to the Fields Institute in Toronto,
during the 2005 semester on “The Geometry of String Theory”; he would also like
to thank the NSF for supporting a visit to the Mittag-Leffler institute during the
Spring 2005 semester on “Algebraic combinatorics”.



20 A. Buch, A. Kresch, M. Shimozono, H. Tamvakis, and A. Yong

References

1. S. Billey, W. Jockusch, and R. P. Stanley, Some combinatorial properties of Schubert polyno-

mials, J. Algebraic Combin. 2 (1993), no. 4, 345–374.

2. A. S. Buch, Grothendieck classes of quiver varieties, Duke Math. J. 115 (2002), no. 1, 75–103.

3. , A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math. 189

(2002), no. 1, 37–78.

4. , Alternating signs of quiver coefficients, J. Amer. Math. Soc. 18 (2005), no. 1, 217–

237.
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