
1

What is a Function M-File?

Table of Contents
A Simple Function M-File ... 1
The General Idea .. 2
A (More) Complicated Function M-File ... 3

Suppose you wished to write your own function which you could access every time you loaded up Matlab. Suppose it
couldn't be as simple as we've seen before - perhaps it needs to test the values passed to it like a piecewise function in
calculus. Suppose the function is a process that needs to calculate and return a value. How can we do this?

Matlab allows all of this very conveniently using function M-files. At its most basic level an M-file is a text file
containing a series of Matlab commands. Typically these files have the extension .m which is where they get their
name. The location of these files is important also since otherwise Matlab won't know where to find them. The best
and perhaps most obvious place to put them is in the current working directory. This is the directory indicted in the
leftmost directory window "Current Directory" on Matlab. If you wish to store your M-files in another directory you'll
have to add that directory to the path. You can do this by hunting under the "File" pull-down menu.

A Simple Function M-File
Let's start by creating a function M-file which you'll then have in your directory for future use. We'll make
it something useful from calculus. We know that an object dropped from a height of h meters will strike
the ground in sqrt(h/4.9) seconds. Let's create a function M-file named HowLong. To do this type:

edit HowLong.m

Matlab will verify that you'd like to open a new file (in the current working directory) so click "Yes".

In the editor window which opens type the following code:

function t=HowLong(h)
 t=sqrt(h/4.9);
end

Note: The end at the end of the m-file is not critical but it is good programming practice and I will always
do it. I recommend you do too. This way the function has an end and each for, while and if has an end.

Save the M-file. From now on we can access our function simply by calling the HowLong function. You
can do this anytime you ever run Matlab (now or in the future) because the file (and hence the function)
will be there until you delete it.

HowLong(100)

ans =

 4.517539514526256

Stop to anaylze for a minute how this function works. The keyword function tells Matlab that we're
writing a function. The t= indicates the variable which we'll use to return the result. The name HowLong

What is a Function M-File?

2

is the name of the function and the parenthetical h indicates that a single value will be passed to the function
and in that function the value will be called h.

We can also do things like:

syms x;
HowLong(x)

ans =

((10*x)/49)^(1/2)

or:

syms q;
HowLong(q)

ans =

((10*q)/49)^(1/2)

The General Idea
The general outline of a function M-file is as follows:

function r=functionname(a,b,...)
 do stuff
 any matlab stuff
 by the end assign
 r = whatever you want to return
end

You can do any Matlab commands you like in the middle provided that you assign your return value r
before you end the function.

Note that the use of r is arbitrary, you can use any variable you wish, but it must be the variable
you assign to return!

The functionname must correspond to the filename functionname.m you use. Here are some other
simple function m-files and what they do:

Example 1: This will accept one value a and return that value plus 3.

function bah = justin1(a)
 bah = a+3;
end

Example 2: This will accept two values a and b, solves a*x+b, printing the result since the line does not
end with a semicolon ;, and then assigns (and therefore returns) s=a-b.

function happy = justin2(a,b)
 syms x;

What is a Function M-File?

3

 solve(a*x+b);
 happy = a-b;
end

Example 3: This does ezplot on a*x^2 and returns a-8. It completely ignores b. In practice you'd never
ignore a parameter (otherwise what would be the point of having it?) but this just shows that it will work.

function y = justin3(a,b)
 syms x;
 ezplot(a*x^2);
 y = a-8;
end

A (More) Complicated Function M-File
Function M-files do not need to be so simple. We can define a piecewise function. Try this new M-file:

edit pwisef.m

In the function place the following:

function y=pwisef(x)
 if (x <= 0)
 y = -x;
 else
 y = sin(x);
 end
end

Note: The first end ends the if/else and the second end ends the function. The result is as expected:

pwisef(-1)

ans =

 1

versus

pwisef(pi/4)

ans =

 0.707106781186547

But if you try the following you'll get an error:

pwisef(x)

Conversion to logical from sym is not possible.

Error in pwisef (line 2)

What is a Function M-File?

4

 if (x <= 0)

Error in Ch16_FunctionMFilesOne (line 158)
pwisef(x)

Why is this? The answer is fairly straightforward. The pwisef takes the value x as a parameter and then
hits a brick wall when it tries to execute if (x<=0). How can it compare x to 0 if it doesn't know
x? It can't.

Published with MATLAB® 8.0

	Table of Contents
	A Simple Function M-File
	The General Idea
	A (More) Complicated Function M-File

