
CMSC 351: Algorithm Time Complexity

Justin Wyss-Gallifent

July 22, 2023

1 Introduction . 2
2 Problems, Algorithms, Time Complexity 2
3 Complications . 3

3.1 Storage Assumptions . 3
3.2 Unclear Algorithm Descriptions 5
3.3 What Goes Inside? . 5

1

1 Introduction

It’s very common to hear statements such as “Bubble sort is O(n2)” but what
does this mean exactly?

2 Problems, Algorithms, Time Complexity

Typically in computer science we have a problem we wish to solve (or a calcu-
lation we wish to perform) and we create an algorithm to do so.

Problem −→ Algorithm −→ (Pseudo)Code

That algorithm then has an implementation in (pseudo)code and that imple-
mentation has a time complexity.

Definition 2.0.1. Technically speaking an algorithm is a finite sequence of in-
structions, rigorously given, which solves a problem or performs a computation.

Most of this time the instructions in the algorithm are clear enough that it is
obvious what the corresponding (pseudo)code would look like and so the time
complexity becomes clear.

Example 2.1. Consider the problem of determining if a list is sorted. This
description of the problem is not an algorithm. An algorithm might be
something like:

Algorithm 1: Check if every element is no larger than the next one and
return True if this is the case and False otherwise.

We could implement Algorithm 1 as follows:

function isSorted1(A):

n = length(A)

for i = 0 to n-2:

if A[i] > A[i+1]:

return False

end if

end for

return True

end function

We can easily see that this pseudcode has time complexity Θ(n) and so we
say that Algorithm 1 has time complexity Θ(n) where n is the length of the
list.

Of course this is not the only algorithm which determines if a list is sorted.

Algorithm 2: Check if every element is no larger than all the following
elements and return True if this is the case and False otherwise.

2

We could implement Algorithm 2 as follows:

function isSorted2(A):

n = length(A)

for i = 0 to n-2:

for j = i+1 to n-1:

if A[i] > A[j]:

return False

end if

end for

end for

return True

end function

We can easily see that this pseudcode has time complexity Θ(n2) and so we
say that Algorithm 2 has time complexity Θ(n2) where n is the length of
the list.

What is critical then is that when we make a statement such as:

Determining if a list is sorted is Θ(n).

What we really mean is:

The fastest possible known algorithm for determining if a list is sorted has an
implementation which has time complexity Θ(n).

In the above example it would be Algorithm 1.

Of course you might protest - perhaps there is a faster algorithm. And perhaps
you’re right, and if you found such an algorithm you could then disagree with
the above statement and say something like “No, determining if a list is sorted
is actually Θ(lg n)!” and you could present your algorithm for doing this.

Note 2.0.1. In reality this is partly the reason why we might avoid using Θ
and stick with O. If we have shown a problem is O(n) using a O(n) algorithm
then even if an updated algorithm is O(lg n), meaning the problem is O(lg n),
it is still O(n) as well, whereas this is not the case if we’ve used Θ.

If this is a bit confusing don’t forget that if f(n) = O(lg n) then f(n) = O(n)
as well but if f(n) = O(n) then we cannot tell if f(n) = O(lg n).

3 Complications

There are several points to consider, however:

3.1 Storage Assumptions

In our list example above we are assuming that our list is stored in some “nice”
way such that we can access list elements in constant time. There are of course

3

other ways to store a list of numbers such as in a linked list, in a stack, in a
queue, and so on, and if we were to alter our assumption of how the list is stored
this may or may not change the result.

Example 3.1. Suppose a stack A represents a list of numbers and we wish
to determine if the list is sorted. Assume when we pop from an empty stack
we get NULL.

An algorithm might be something like:

Algorithm: Pop elements off the stack and check if each element is greater
than or equal to the next one popped. Return True if this is the case and
False otherwise.

We could implement this as follows:

function issorted(A):

x = A.pop

if x == NULL:

return True

y = A.pop

if y != NULL:

if x < y:

return False

x = y

y = A.pop

end if

return True

end function

We can easily see that if n is the number of elements on the stack then this
pseudcode has time complexity Θ(n) and so we say that our algorithm has
time complexity Θ(n).

While the storage may vary one critical item to note is that the way we are
storing the data must be agnostic to the problem. What this means, essentially,
is that we can’t choose to store the data in a way that makes the problem
obvious.

Example 3.2. Suppose we said that we will store a list in the entries
A[1], A[2], ... and require that A[0] contains 0 if the list is unsorted and
1 if the list is sorted. Then our algorithm will be:

Algorithm: Check if A[0] is 0 or 1.

With pseudocode:

function issorted(A)

if A[0] == 1:

4

return True

end if

return False

end function

Now we claim that determining if a list is sorted is Θ(1).

Clearly we’re being dishonest here in the sense that we’re storing our list in
a way which is not agnostic to the problem we’re trying to solve, and this is
a no-no.

3.2 Unclear Algorithm Descriptions

It’s not uncommon for the description of an algorithm to be unclear in some
specifics.

Example 3.3. Kruskal’s algorithm (for graph) involves detecting if adding
an edge to a graph forms a cycle. In the description and in the pseudocode
we will often simply see some fragment like the following:

if adding this edge forms a cycle:

blah blah

However it is not entirely clear how we would know if adding an edge would
form a cycle or not. In such a case we should be more precise when discussing
time complexity.

3.3 What Goes Inside?

When we are working with an object such as a list it’s fairly clear that when we
say that some algorithm is Θ(n) the n is referring to the number of elements in
the list. However if the data we are working with is something different then
we have to be more specific.

Some examples that we will see as we progress will be things like:

• When working with n× n arrays then it makes sense to use n inside.

• When working with n ×m arrays then it makes sense to use both n and
m inside.

• When working with graphs with V vertices and E edges then it makes
sense to use both V and E inside.

5

	Introduction
	Problems, Algorithms, Time Complexity
	Complications
	Storage Assumptions
	Unclear Algorithm Descriptions
	What Goes Inside?

