
CMSC 351: Breadth-First Traverse

Justin Wyss-Gallifent

November 6, 2023

1 Introduction . 2
2 Intuition . 2
3 Algorithm . 3
4 Working Through an Example 3
5 Pseudocode . 7
6 Pseudocode Time Complexity . 8
7 Modifying to Search . 8
8 Thoughts, Problems, Ideas . 9
9 Python Test and Output . 10

1

1 Introduction

Suppose we are given a graph G and a starting vertex s. Suppose we wish
to simply traverse the graph in some way looking for a particular value node.
We’re not interested in minimizing distance or cost or any such thing, we’re just
interested in the traverse.

2 Intuition

One classic way to go about this is a breadth-first traverse. The idea is that
starting with s we check all vertices connected to s first, and then all vertices
connected to those, and so on. In this sense we’re covering the graph in “layers
of increasing distance from s”. This is the idea of a breadth-first traverse.

Note 2.0.1. The shortest path algorithm basically basically follows a breadth-
first approach.

Note 2.0.2. Breadth-first traversing is more useful if there’s a target and we
suspect that the target is close to the starting vertex.

Note 2.0.3. Breadth-first traversing is more useful for things like web-crawling
when we might want to find all of the closer vertices first and the algorithm may
truncate early.

Note 2.0.4. Breadth-first traversing is more useful when we are trying to ex-
plore a strongly connected part of a graph, the idea being that we want to
explore close to home before venturing too far away.

2

3 Algorithm

The algorithm for breadth-first traverse starting at a vertex s proceeds as fol-
lows:

We first set up:

• A queue Q = [s].

• A boolean list V ISITED of length V which indicates whether a vertex
has been visited or not and fill it full of F , or 0, except V ISITED[s] = T .

• A list V ORDER = [s] which will contain the vertices in the order we visit
them.

We then repeat the following steps until the queue is empty:

1. x = Q.dequeue

2. Find all vertices adjacent to x which have not been visited. For each, put
them on Q and update V ISITED and V ORDER.

By convention and consistency when we “find all connected and unvisited ver-
tices” we’ll do it in increasing numerical order.

4 Working Through an Example

In this example we won’t show every single iteration. Instead we’ll only show
those as noted.

Example 4.1. Consider the following graph.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Suppose we wish to traverse the graph starting at the node s = 0.

Thus for our above example we start with:
Q = [0]
V ISITED = [T, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F]
V ORDER = [0]

Iterate! We dequeue x = 0. We find all connected and undiscovered vertices

3

{1, 4, 5} those get put onto Q and we update V ISITED and V ORDER:
Q = [1, 4, 5]
V ISITED = [T, T, F, F, T, T, F, F, F, F, F, F, F, F, F, F]:
V ORDER = [0, 1, 4, 5]

Iterate! We dequeue x = 1, we find all connected and undiscovered vertices
{2, 6} so those get put onto Q and we update V ISITED and V ORDER:
Q = [4, 5, 2, 6]
V ISITED = [T, T, T, F, T, T, T, F, F, F, F, F, F, F, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6]

Iterate! We dequeue x = 4, we find all connected and undiscovered vertices
{8} so those get put onto Q and we update V ISITED and V ORDER:
Q = [5, 2, 6, 8]
V ISITED = [T, T, T, F, T, T, T, F, T, F, F, F, F, F, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6, 8]

Iterate! We dequeue x = 5, we find all connected and undiscovered vertices
{9} so those get put onto Q and we update V ISITED and V ORDER:
Q = [2, 6, 8, 9]
V ISITED = [T, T, T, F, T, T, T, F, T, T, F, F, F, F, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9]

Iterate! We dequeue u = 2, it gives us undiscovered vertices {3, 7} so those
get put onto Q and we update V ISITED and V ORDER:
Q = [6, 8, 9, 3, 7]
V ISITED = [T, T, T, T, T, T, T, T, T, T, F, F, F, F, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7]

Iterate! We dequeue u = 6, we find all connected and undiscovered vertices
{11} so those get put onto Q and we update V ISITED and V ORDER:
Q = [8, 9, 3, 7, 11]
V ISITED = [T, T, T, T, T, T, T, T, T, T, F, T, F, F, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11]

Iterate! We dequeue u = 8, we find all connected and undiscovered vertices
{13} so those get put onto Q and we update V ISITED and V ORDER:
Q = [9, 3, 7, 11, 13]
V ISITED = [T, T, T, T, T, T, T, T, T, T, F, T, F, T, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11]

Iterate! We dequeue u = 9, we find all connected and undiscovered vertices
{10} so those get put onto Q and we update V ISITED and V ORDER:
Q = [3, 7, 11, 13, 10]
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, F, T, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9]

4

Iterate! We dequeue u = 3, we find all connected and undiscovered vertices
{}.
Q = [7, 11, 13, 10]
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, F, T, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9]

Iterate! We dequeue u = 7, we find all connected and undiscovered vertices
{}.
Q = [11, 13, 10]
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, F, T, F, F]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9]

Iterate! We dequeue u = 11, we find all connected and undiscovered vertices
{15} so those get put onto Q and we update V ISITED and V ORDER:
Q = [13, 10, 15]
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, F, T, F, T]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9, 15]

Iterate! We dequeue u = 13, we find all connected and undiscovered vertices
{12} so those get put onto Q and we update V ISITED and V ORDER:
Q = [10, 15, 12]
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, T, T, F, T]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9, 15, 12]

Iterate! We dequeue u = 10, we find all connected and undiscovered vertices
{14} so those get put onto Q and we update V ISITED and V ORDER:
Q = [15, 12, 14]
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9, 15, 12, 14]

Iterate! We dequeue u = 15, we find all connected and undiscovered vertices
{}.
Q = [12, 14]
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9, 15, 12, 14]

Iterate! We dequeue u = 12, we find all connected and undiscovered vertices
{}.
Q = [14]
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T]:
V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9, 15, 12, 14]

Iterate! We dequeue u = 14, we find all connected and undiscovered vertices
{}.
Q = []
V ISITED = [T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T]:

5

V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 9, 15, 12, 14]

Since Q is empty we’re done.

We return V ORDER = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10, 15, 12, 14].

6

5 Pseudocode

Here is the pseudocode:

function bft(G,s)

QUEUE = [s]

VISITED = list of FALSE of length V

VISITED[s] = TRUE

VORDER = [s]

while QUEUE is not empty

x = QUEUE.dequeue

for all y adjacent to x

if VISITED[y] == FALSE

QUEUE.enqueue(y)

VISITED[y] = TRUE

VORDER.append(y)

end

end

end

return(VORDER)

end

7

6 Pseudocode Time Complexity

Suppose V is the number of vertices and E is the number of edges.

• The initialization takes O(V). This could in fact take Θ(1) depending on
the architecture but the choice has no effect on the result.

• Each vertex gets enqueued and dequeued exactly once so this is V Θ(1)
each for a total of Θ(V) for just the dequeue, not the for loop.

• The body of the for loop iterates 2E times over the course of the entire
algorithm, once for each vertex at each end of the edge. The body takes
constant time Θ(1). so overall this is Θ(2E) = Θ(E).

The time complexity is therefore O(V) + Θ(V) + Θ(E) = O(V + E). If initial-
ization is actually Θ(1) then this becomes Θ(V + E).

Note 6.0.1. Note that our pseudocode and analysis assumes we have direct
access to a vertex’s edges using something like an adjacency list. If we use an
adjacency matrix then the inner loop becomes Θ(V) and the entire pseucode
becomes Θ(V 2).

Note 6.0.2. There are breadth-first traverses which run in O(E lg V) but they
requires a radically different pseudocode based upon a heap structure instead
of a simple list S. This heap structure is what leads to the lg V factor.

7 Modifying to Search

Breadth-first traverse can be tweaked if there is a target node in mind. How
would you tweak the pseudocode to exit as soon as the target was found and
how would that change the time complexity?

8

8 Thoughts, Problems, Ideas

1. Suppose node i is a structure with properties i.height, i.weight and i.volume.
Modify the pseudocode to return the weight of the first node encountered
whose weight is more than 100. You may assume such a node exists.

2. Same as above but no such assumption. Return NULL if no such node is
found.

3. When s is dequeued all of the vertices connected to s will be newly discov-
ered. This is not true for any other vertex x because the algorithm-parent
of x will already be discovered. Under what circumstances, for every other
vertex x, would the algorithm-parent be the only previously discovered
vertex?

4. Let qi be the length of Q after the ith iteration of the while loop. We’ll
say q0 = 1 to be comprehensive since Q = [s] when no iterations have
completed. So in the example in the notes q1 = 3, q3 = 4, and so on.
Of course there is some k such that qk = 0 as this is when the algorithm
ends. Moreover in the example qi initially (nonstrictly) increases and then
(nonstrictly) decreases. Must the qi always follow this pattern? Explain.

5. Building off the previous problem what is the maximum that k might be?
How about the minimum? What would a graph look like (qualitatively) if
its k-value were somewhere in the middle? Explain using specific examples
of graphs.

6. Describe the impact if the graph were given with the adjacency matrix
rather than the adjacency list. How would that impact the pseudocode
and the time complexity?

7. Modify the pseudocode so that we may pass a maxdepth and so that the
algorithm will go no further than that depth from the starting vertex.

9

9 Python Test and Output

The following code is applied to the graph above. This follows the model of the
pseudocode and in addition creates and returns a list of the vertices in the order
in which they were discovered.

Code:

def bfs(EL ,n,s):

Q = [s]

D = [False] * n

D[s] = True

V = [s]

print(’Q = ’ + str(Q))

print(’V = ’ + str(V))

#print(’D = ’ + str(D). replace(’True ’,’T’). replace(’False ’,’F’))

while len(Q) != 0:

x = Q.pop(0)

for y in EL[x]:

if not D[y]:

D[y] = True

V.append(y)

Q.append(y)

print(’Q = ’ + str(Q))

print(’V = ’ + str(V))

#print(’D = ’ + str(D). replace(’True ’,’T’). replace(’False ’,’F’))

return(V)

EL = [

[1, 4, 5],

[0, 2, 6],

[1, 3, 6, 7],

[2],

[0, 8],

[0, 6, 8, 9],

[1, 2, 5, 11],

[2],

[4, 5, 13],

[5, 10],

[9, 14],

[6, 15],

[13],

[8, 12],

[10],

[11]

]

n = 16

10

s = 0

visited = bfs(EL ,n,s)

print(’Discovered = ’ + str(visited))

11

Output:

Q = [0]

V = [0]

Q = [1, 4, 5]

V = [0, 1, 4, 5]

Q = [4, 5, 2, 6]

V = [0, 1, 4, 5, 2, 6]

Q = [5, 2, 6, 8]

V = [0, 1, 4, 5, 2, 6, 8]

Q = [2, 6, 8, 9]

V = [0, 1, 4, 5, 2, 6, 8, 9]

Q = [6, 8, 9, 3, 7]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7]

Q = [8, 9, 3, 7, 11]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11]

Q = [9, 3, 7, 11, 13]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13]

Q = [3, 7, 11, 13, 10]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10]

Q = [7, 11, 13, 10]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10]

Q = [11, 13, 10]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10]

Q = [13, 10, 15]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10, 15]

Q = [10, 15, 12]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10, 15, 12]

Q = [15, 12, 14]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10, 15, 12, 14]

Q = [12, 14]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10, 15, 12, 14]

Q = [14]

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10, 15, 12, 14]

Q = []

V = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10, 15, 12, 14]

Discovered = [0, 1, 4, 5, 2, 6, 8, 9, 3, 7, 11, 13, 10, 15, 12, 14]

12

	Introduction
	Intuition
	Algorithm
	Working Through an Example
	Pseudocode
	Pseudocode Time Complexity
	Modifying to Search
	Thoughts, Problems, Ideas
	Python Test and Output

