
CMSC 351: Binary Search

Justin Wyss-Gallifent

September 25, 2023

1 What it Does . 2
2 How it Works . 2
3 Pseudocode . 3
4 Time Complexity Analysis . 3
5 Thoughts, Problems, Ideas . 7
6 Python Test . 9

1

1 What it Does

Given a sorted list of elements and a target element, finds the index of the target
element or returns failure if the target element does not exist.

2 How it Works

The algorithm first looks at the middle of the list. If if element is not there then
it knows by comparison if the element is on the left or the right of that middle
element and so it concentrates its search to half the list and repeats. It keeps
repeating this process either until it finds the element or the sublist it is looking
at shrinks to length 1 and the element is not found.

Example 2.1. Consider the list with 20 elements. We wish to find the
number 17. We look at the entire list:

A = [0, 0, 4, 4, 6, 7, 8, 9, 9, 10, 12, 13, 13, 14, 14, 17, 18, 19, 19, 19]

We reference the start and end by indices so we have L = 0 and R = 19. We
find the center C = b(19 + 0)/2c = 9 and find A[9] = 10. This is too small
so 17 must be to the right.

We check the sublist by reassigning L = 9 + 1 = 10 and leaving R = 19:

[0, 0, 4, 4, 6, 7, 8, 9, 9, 10, 12, 13, 13, 14, 14, 17, 18, 19, 19, 19]

We find the center C = b(19 + 10)/2c = 14 and find A[14] = 14. This is too
small so 17 must be to the right.

We check the sublist by reassigning L = 14 + 1 = 15 and leaving R = 19:

[0, 0, 4, 4, 6, 7, 8, 9, 9, 10, 12, 13, 13, 14, 14, 17, 18, 19, 19, 19]

We find the center C = b(19 + 15)/2c = 17 and find A[17] = 19. This is too
large so 17 must be to the left.

We check the sublist by leaving L = 15 and reassigning R = 17− 1 = 16:

[0, 0, 4, 4, 6, 7, 8, 9, 9, 10, 12, 13, 13, 14, 14, 17, 18, 19, 19, 19]

We find the center C = b(16 + 15)/2c = 15 and find A[15] = 17. This is
exactly right so we return 15.

2

3 Pseudocode

In the following pseudocode we assign time values not to get a precise time
measurement but only to look at the complexity. This is why we have not
separated the time values for conditional checks versus bodies.

\\ PRE: A is a sorted list of length n.

\\ PRE: TARGET is a target element.

function binarysearch(A,TARGET)

L = 0
}
c1R = n-1

while L <= R ??? iterations
C = floor((L+R)/2)

c2

if A[C] == TARGET

return C

elif TARGET < A[C]

R = C-1

elif TARGET > A[C]

L = C+1

end

end while

return FAIL c3
end

\\ POST: Value returned is either the index or FAIL.

Note 3.0.1. A note to make sure that this does as intended in the FAIL case:

Assign L=0 and R=n-1. Take the middle index C=floor((L+R)/2). and examine
A(C). If A(C)==TARGET then we return C. Otherwise if TARGET<A(C) then TARGET

is to the left of C so we set R=C-1 and start again. On the other hand if
TARGET>A(C) then TARGET is to the right of C so we set L=C+1 and start again.

This process proceeds until either when we find TARGET or when L=R and
TARGET does not exist. In this latter case what happens is that we assign
C=floor((L+R)/2)=L=R and then since A(C)!=TARGET we end up with either
L = C + 1 = R + 1 or R = C − 1 = L− 1 and in both cases R < L.

4 Time Complexity Analysis

1. Best-Case:

If the target is immediately located at C=floor((L+R)/2) at the start of
the first iteration then the total time requirement is:

T (n) = c1 + c2 = Θ(1)

3

2. Worst Case:

The worst-case scenario happens if the TARGET is never found.

Consider the length of the list after each iteration. Initially it is length n.

After the first iteration the sublist length is n
2 . Technically if n is odd

then the length is this value ±0.5 but this doesn’t affect what follows.

After the second iteration the sublist length is n
4 .

This continues such that after k iterations the sublist length is n
2k

.

In a worst case scenario the while loop iterates until L==R and then at
the end of that iteration R<L and it fails. We have L==R when the sublist
length is 1:

n

2k
= 1

2k = n

k = lg n

However noting that it has one more iteration when L==R we can then
conclude that the loop iterates 1 + lg n times and then the condition fails.

It follows that the total time requirement is:

T (n) = c1 + c2(1 + lg n) + c3 = Θ(lg n)

3. Average Case:

An average case can be defined by examining all possible positions of the
TARGET within the list and taking the average time requirement assuming
all possible positions are equally likely.

The calculation will be easier if we look at the case where n = 2N − 1 for
N ∈ Z+. Let’s analyze the number of iterations of the while loop required
for each element in the list.

When n = 21 − 1 = 1 there is only one element and it is found after one
iteration. We could put this in a really boring table:

elements # iterations

1 1

When n = 22−1 = 3 there is one element which is found after one iteration
and now let’s stop to make an observation. The remaining elements will be
in a left or right sublist and each of these sublists has length 1. It follows
that effectively, one iteration later, we have two copies of the N = 1 case,
meaning we will have two copies of that case with one more iteration each:

4

elements # iterations

1 1
2(1)=2 1+1 = 2

When n = 23−1 = 7 there is one element which is found after one iteration
and then the remaining elements will be in a left or right sublist each of
which is a copy of the N = 2 case so we’ll have two copies of that case
with one more iteration each:

elements # iterations

1 1
2(1)=2 1+1=2
2(2)=4 2+1=3

And again for n = 24 − 1 = 15:

elements # iterations

1 1
2(1)=2 1+1 = 2
2(2)=4 2+1 = 3
2(4)=8 3+1 = 4

In general when n = 2N − 1 we have the following:

elements # iterations

1 1

2 2

4 3

8 4
...

...

2N−1 N

Now then, the probability of getting an element requiring some number of
iterations equals the number of such elements divided by n, and i iterations
takes c1 + ic2 time, so we can write the following table:

5

Probability Time

1
n c1 + 1c2

2
n c1 + 2c2

4
n c1 + 3c2

8
n c1 + 4c2
...

...

2N−1

n c1 + Nc2

The expected time is then:

N∑
i=1

(Probability)(Time) =

N∑
i=1

2i−1

n
[c1 + ic2]

=
1

n

N∑
i=1

2i−1 [c1 + ic2]

=
1

n

[
c1

N∑
i=1

2i−1 + c2

N∑
i=1

i2i−1

]
= ... = Θ(lg n)

6

5 Thoughts, Problems, Ideas

1. Show the steps of binary search when looking for the value 17 in the list
{−3, 4, 7, 17, 20, 30, 40, 51, 105, 760}. At each step give the value of C and
how the comparisons update L and R. Inside the while loop how many
comparisons are made?

2. How does the particular pseudocode in the notes behave if the target exists
at multiple indices?

3. Adjust the pseudocode so that if the target exists at multiple indices
the function returns the first occurrence. Find the O worst-case time
complexity of this pseudocode.

4. Adjust the pseudocode so that if the target exists at multiple indices
the function returns the last occurrence. Find the O worst-case time
complexity of this pseudocode.

5. Assuming the list values are distinct, adjust the pseudocode so that if the
target does not exist the function returns the smallest value larger than
the target.

6. Explain how your answer to the previous question can be used to modify
InsertSort. Pseudocode is not necessary, a good explanation will suffice.

7. In the pseudocode implementation in the notes the worst-case total time
requirement is TB(n) = c1 + c2(1 + lg n). A straightforward linear search
is linear, something like TL(n) = c3 + c4n. If c1 = 2, c2 = 10 (it’s a big
compound statement), c3 = 1 and c4 = 2, Plot these functions together
on an axis. for which n will each be faster? This question is intended to
be computer-assisted.

8. Suppose the sorted list A is infinitely long. In other words think of A as
an increasing function defined for all integers n ≥ 0. Here some ideas for
extending binary search:

• Start with L=0 (of course) and R set at some arbitrary positive integer.

• If we have ever found some C with TARGET < A[C] then we can ba-
sically just do binary search on A[0,...,C].

• If we have never found some C with TARGET < A[C] then each time
we encounter TARGET > A[C] we double R and continue.

(a) Show how modifying the algorithm this way and using R=4 and
TARGET=15 will work with the list:

A = [0, 4, 5, 10, 11, 12, 15, 16, 18, 20, 30, 31, 50, 100, 117, 118, 119, 200, 203, ...]

(b) Write the pseudocode for this algorithm.

7

9. Suppose that due to some noise in the data exactly one of the comparisons
will register as incorrect.

(a) Give a specific example to illustrate that Binary Search could com-
pletely fail.

(b) Give a specific eample to illustrate that Binary Search might still
work.

10. Suppose the two-dimensional array A of size n × m which is indexed as
A[0,...,n-1][0,...,m-1] contains integers with the property that every
entry is greater than or equal to the entry directly above it and is greater
than or equal to the entry directly to the left of it.

An example of such an array is:
2 7 8 10 14
3 8 9 11 15
6 10 12 12 20
7 11 13 13 21
8 11 15 20 22

Write the pseudocode for a function binarysearch2d which locates a tar-
get entry in the array and returns the location. Your algorithm should
use a 2D version of binary search.

Hint: In the above example the middle entry is 12. If the target is less
than 12 where could it be? If the target is more than 12 where could it
be?

11. Binary Search only works on a sorted list. Suppose we have an unsorted
list A and we wish to check if an element is in the list. We could sort it
using one of our three sorts and then check if Binary Search returns FAIL
or not. From a time perspective why is this a bad choice?

8

6 Python Test

Code:

import random

import math

def binarysearch(A,TARGET):

L = 0

R = len(A)-1

while L <= R:

print(’Checking: ’+str(A[L:R+1]))

C = math.floor ((L+R)/2)

if A[C] == TARGET:

print(’Checking: [’ + str(A[C]) + ’]’)

return(C)

elif TARGET < A[C]:

R = C-1

elif TARGET > A[C]:

L = C+1

return(False)

A = []

for i in range (0 ,20):

A.append(random.randint (0 ,50))

A.sort()

print(A)

TARGET = 10

result = binarysearch(A,TARGET)

if result == False:

print(’Not Found ’)

else:

print(’Found at index ’ + str(result))

9

Output:

[1, 2, 7, 10, 12, 14, 15, 16, 17, 17, 22, 23, 28, 30, 37, 43, 45, 46, 49, 50]

Checking: [1, 2, 7, 10, 12, 14, 15, 16, 17, 17, 22, 23, 28, 30, 37, 43, 45, 46, 49, 50]

Checking: [1, 2, 7, 10, 12, 14, 15, 16, 17]

Checking: [1, 2, 7, 10]

Checking: [7, 10]

Checking: [10]

Checking: [10]

Found at index 3

And:

[3, 3, 3, 5, 5, 6, 7, 8, 9, 15, 20, 22, 26, 28, 28, 29, 30, 32, 39, 49]

Checking: [3, 3, 3, 5, 5, 6, 7, 8, 9, 15, 20, 22, 26, 28, 28, 29, 30, 32, 39, 49]

Checking: [3, 3, 3, 5, 5, 6, 7, 8, 9]

Checking: [6, 7, 8, 9]

Checking: [8, 9]

Checking: [9]

Not Found

Fun fact related to A.sort(): Python’s default sort method uses Timsort.
Timsort is a merge sort and insertion sort hybrid which works well on real-world
data in which there are often runs of sorted sublists within the list. Timsort
essentially collects and merges those runs. Timsort is O(n lg n).

10

	What it Does
	How it Works
	Pseudocode
	Time Complexity Analysis
	Thoughts, Problems, Ideas
	Python Test

