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1 What it Does

Sorts a list of elements such as integers or real numbers.

2 How it Works

We pass through the list from left to right swapping elements which are out of
order. If we pass through once, the final entry is in the right place because the
largest element will have been swapped repeatedly until it is at the end. Thus
the second pass through can stop before the final entry. If we pass through
twice, the final two entries are in the right place and so the third pass through
can stop before the second-to-last entry. We continue onwards. Thus we pass
through n− 1 times total since once the final n− 1 entries are in order, all are.
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3 Visualization

Consider the following list:

8 4 3 4 1

Here is the result of the first pass through. We indicate in red pairs the swaps.

8 4 3 4 1

4 8 3 4 1

4 3 8 4 1

4 3 4 8 1

4 3 4 1 8

Notice after the first pass through the one rightmost element is correct.

Second pass through:

4 3 4 1 8

3 4 4 1 8

3 4 1 4 8

Notice after the second pass through the two rightmost elements are correct.

Third pass through:

3 4 1 4 8

3 1 4 4 8

Notice after the third pass through the three rightmost elements are in order.

The fourth pass through:

3 1 4 4 8

1 3 4 4 8

Notice after the fourth pass through the four rightmost elements are in order
but since there are only five elements, they are all in order.
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4 Pseudocode and Time Complexity

Here is the pseudocode with time assignments:

PRE: A is a list of length n.

for i = 0 to n-2 n− 1 times
for j = 0 to n-i-2 n− i− 2− 0 + 1 = n− i− 1 times

if A[j] > A[j+1]
cswap A[j] and A[j+1]

end

end

end

POST: A is sorted.

This is a terrible implementation. The time required is always the same in the
best-, worst-, and average-cases:

T (n) =

n−2∑
i=0

n−i−2∑
j=0

c

=

n−2∑
i=0

(n− i− 2 + 1)c

=

n−2∑
i=0

c(n− 1)− c

n−2∑
i=0

i

= (n− 2 + 1)c(n− 1)− c

(
(n− 2)(n− 1)

2

)
= c(n− 1)2 − 1

2
c(n− 2)(n− 1)

=
1

2
cn2 − 1

2
cn

= Θ(n2)

A quick note here that if we were interested in every little detail of time then
we would need to label separate time constants for both the conditional check
and for the conditional body and then best-, worst-, and average-cases would
have different total times depending upon the frequency with which the body
of the conditional executed.

However in all cases the conditional is still taking constant time, even if those
constant times are different, and hence the time complexity does not change.
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5 Auxiliary Space

Our BubbleSort (Basic) pseudocode uses O(1) auxiliary space - two indices and
possibly, depending on the implementation, a swap variable This is of course
pretty much ideal.

6 Stability

BubbleSort (Basic) is stable. This means that the order of identical entries is
preserved. In the opening example if we think of the two 4s as different, perhaps
the one on the left is red and one on the right is blue, then the red one is still
on the left at the end. The reason for this is that equal elements are never
swapped, meaning that the order of equal elements is always preserved.

7 In-Place

BubbleSort (Basic) is in-place. This means that the list is sorted by moving
elements within the list, rather than creating a new list.

8 Notes

After k iterations the last k elements are correctly placed and sorted. If Bubble-
Sort were running on a very long list and it was forced to stop early this means
that some amount of the end of the list would be sorted but the beginning would
not. This is the opposite of SelectionSort, as we’ll see.
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9 Bubble Sort (Variation)

We can improve the code somewhat because if any give pass through causes no
swaps then the list is in order and we can exit. Here is the adjusted pseudocode
with time assignments:

PRE: A is a list of length n.

stillgoing = True c1
for i = 0 to n-1 ??? times because of break

didaswap = False c3
for j = 0 to n-i-2 n− i− 1 times

if A[j] > A[j+1]
c2

swap A[i] and A[i+1]

didaswap = True

end

end

if didaswap == False
c4break

end

end

POST: A is sorted.

In this case we have:

• Worst-Case: If the list is in reverse order then each i iteration results in
n− i− 1 comparisons and swaps. To see this observe that if we start with
[5, 4, 3, 2, 1] then the i=0 pass has n−i−1 = 5−0−1 = 4 comparisons and
swaps and results in [4, 3, 2, 1, 5]. The i=1 pass has n−i−1 = 5−1−1 = 3
comparisons and swaps and results in [3, 2, 1, 4, 5], and so on. We therefore
use all of i=0,...,n-1 iterations (no break) and the time is then:

T (n) = c1 +

n−1∑
i=0

c3 +

n−i−2∑
j=0

c2

 = ... = Θ(n2)

• Best-Case: If the list is already sorted then we have one pass through for
i=0 with n− i− 1 iterations and since no swaps occur we exit. The time
is then:

T (n) = c1 + c3 + (n− i− 1)c2 + c4 = ... = Θ(n)

• Average-Case: We need to clarify what an “average” list looks like. It
turns out that in an average list we end up swapping about half the time.
(his takes some combinatorics) and the result is still Θ(n2).

This variation also uses O(1) auxiliary space, is stable, and is in-place.
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10 Closing Notes

While BubbleSort is fairly useless in practice since it is slow and inefficient it
is nonetheless useful for basic algorithmic understanding and some of the ideas
therein can be used in other algorithms.
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11 Thoughts, Problems, Ideas

1. Fill in the calculation:

T (n) =

n−1∑
i=0

n−i−2∑
j=0

c1 = ... = Θ(n2)

At the end, provide a rigorous proof from the definition of Θ that the
result is Θ(n2).

2. Fill in the calculation:

T (n) = c1 +

n−1∑
i=0

c3 +

n−i−2∑
j=0

c2

 = ... = Θ(n2)

At the end, provide a rigorous proof from the definition of Θ that the
result is Θ(n2).

3. Suppose BubbleSort (Basic) is used to sort the list [34,2,17,5,10]. Show
the list after each swap and count the number of swaps.

4. Modify the BubbleSort (Basic) pseudocode to produce an algorithm which
moves all 0s (if any) to the right and otherwise preserves order.

5. BubbleSort (Basic) is stable. Explain in your own words what that means.
What single-character change in the pseudocode would make it not stable?

6. How many comparisons occur in BubbleSort (Basic)?

7. In BubbleSort (Basic) how many swaps occur in a worst-case scenario?
How about a best-case scenario?

8. In BubbleSort (Basic) think about how many swaps might occur in an
average-case scenario. What if the list was mostly sorted? This is a
qualitative rather than a quantitative question.

9. Each integer greater than 2 has a unique prime factorization. For example
243936 = 25 · 32 · 71 · 112. Suppose you want to write an algorithm which
sorts the powers using BubbleSort and modifies the number accordingly,
so we’d have, for example:

243936 = 25 · 32 · 71 · 112 =⇒ 21 · 32 · 72 · 115 = 142046982

You wish to use BubbleSort on the exponents but you are only given the
integer n and you cannot construct or use a mutable list. You do have
access to the commands:

• ppow(n,p) which gives the exponent corresponding to the power of
p in n, so ppow(243936,3) returns 2.

• parr(n) which returns the list of primes whcih occur in the prime
factorization of n, so parr(243936) returns [2,3,7,11]. You can
index it with parr(243935)[0] yielding 2, for example.
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Write the associated pseudocode.

10. If the algorithm in the previous problem is used to define a function
primesort(n) (so for example primesort(243936)=142046982) explain
why the output is never smaller than the input. For which n is it identical?

11. Modify BubbleSort so that after k iterations the first k elements are cor-
rect.

12. Modify BubbleSort so that after 2k iterations the first k and last k ele-
ments are correct. You can assume that the list has an even number of
elements. Hint: Alternate!

13. Here is a re-labeling of BubbleSort (Basic) time requirements in which the
time of the conditional and its body assignment have been separated:

PRE: A is a list of length n.

for i = 0 to n-1 n times
for j = 0 to n-i-2 n− i− 2− 0 + 1 = n− i− 1 times

if A[j] > A[j+1] c1
swap A[j] and A[j+1] c2

end

end

end

POST: A is sorted.

(a) If c1 = 3 and c2 = 10, both in seconds, how long will it take to sort
the list [4,5,1,2,7,7]?

(b) Suppose the inputs to this implementation are such that on average
the inequality is true with probability 0 ≤ p ≤ 1. Calculate the
resulting average time requirements exactly. When you have your re-
sult suppose n were some fixed value. Explain how the time required
changes as p does. Is it linear or something else?

14. Provide a rigorous mathematical proof that the first iteration through
BubbleSort places the largest element in the final position.

15. Suppose you hate break statements. Rewrite the BubbleSort (Variation)
using a while loop and no break.
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12 Python Test (Basic Version) with Output

Code:

import random

A = []

for i in range (0 ,10):

A.append(random.randint (0 ,100))

n = len(A)

print(’Start: ’+str(A))

for i in range(0,n):

for j in range(0,n-i-1):

if A[j] > A[j+1]:

temp = A[j]

A[j] = A[j+1]

A[j+1] = temp

print(’Iterate: ’+str(A))

print(A)

Output:

Start: [74, 85, 2, 13, 82, 36, 29, 66, 31, 12]

Iterate: [74, 2, 13, 82, 36, 29, 66, 31, 12, 85]

Iterate: [2, 13, 74, 36, 29, 66, 31, 12, 82, 85]

Iterate: [2, 13, 36, 29, 66, 31, 12, 74, 82, 85]

Iterate: [2, 13, 29, 36, 31, 12, 66, 74, 82, 85]

Iterate: [2, 13, 29, 31, 12, 36, 66, 74, 82, 85]

Iterate: [2, 13, 29, 12, 31, 36, 66, 74, 82, 85]

Iterate: [2, 13, 12, 29, 31, 36, 66, 74, 82, 85]

Iterate: [2, 12, 13, 29, 31, 36, 66, 74, 82, 85]

Iterate: [2, 12, 13, 29, 31, 36, 66, 74, 82, 85]

Iterate: [2, 12, 13, 29, 31, 36, 66, 74, 82, 85]

[2, 12, 13, 29, 31, 36, 66, 74, 82, 85]
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