
CMSC 351: Coin Changing

Justin Wyss-Gallifent

January 22, 2025

1 Introduction to Coin Changing . . . . . . . . . . . . . . . . . . . 2
2 The Greedy Method (a Minimization Attempt) . . . . . . . . . . 2
3 An Algorithm for Minimization . . . . . . . . . . . . . . . . . . . 3

3.1 A Dynamic Programming Idea . . . . . . . . . . . . . . . 3
3.2 An Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . 5

4 Counting the Ways . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 A Dynamic Programming Approach . . . . . . . . . . . . 6
4.3 An Algorithmic Idea . . . . . . . . . . . . . . . . . . . . . 7
4.4 An Actual Algorithm . . . . . . . . . . . . . . . . . . . . 7
4.5 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . 10

1



1 Introduction to Coin Changing

Suppose all you have are 1-cent, 5-cent and 10-cent coins but you have infinitely
many of each. For any given (cent) total n we wish to obtain n cents out of our
coins. Consider the following associated problems:

(a) How can we do this if we don’t care how many coins we use?

(b) How can we do this if we wish to use the minimum number of coins?

(c) How many ways can we do this if we don’t care about using the minimum
number of coins?

In this case our coins can be thought of in a list C = [1, 5, 10] and even though
we’ll change that we’ll always assume that we have a 1-cent coin. This guaran-
tees that it’s possible to obtain any amount.

Note 1.0.1. The reason this is known as the coin changing problem is that the
original premise is that the total n is the amount of change being given for a
purchase and the question was about how this can be done.

Note 1.0.2. The question can be asked even without a 1-cent coin but it gets
more challenging. For example if C = [3, 7] it’s not clear at all which totals can
be even be made.

2 The Greedy Method (a Minimization Attempt)

An intuitive approach (which doesn’t always work, as we’ll see) to using the
minimum number of coins is to be greedy. Since we wish to use the minimum
number of coins it seems sensible to use as many of the large coins as possible,
followed by the next largest, and so on.

Example 2.1. Suppose C = [1, 5, 10] and we wish to obtain n = 27 cents.
We first grab two 10-cent coins (the most we can have) followed by one 5-
cent coin (the most we can have) followed by two 1-cent coins. We have thus
used 5 coins.

This is in fact optimal - it is the minimal number of coins, but this may not
be obvious.

Example 2.2. Suppose C = [1, 10, 25] and we wish to obtain n = 30 cents.
We first grab one 25-cent coins (the most we can have), we can’t grab any
10-cent coins, so we finish by grabbing five 1-cent coins. We have thus used
6 coins.

This solution is not optimal however since we could have grabbed three
10-cent coins instead.
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3 An Algorithm for Minimization

3.1 A Dynamic Programming Idea

We’ve seen that our greedy approach is not guaranteed to give us an optimal
(smallest) number of coins. However we know that there must be some optimal
solution so we can ask - how might we go about finding it?

Before developing an algorithm let’s make an observation. For now let’s stick
with C = [1, 5, 10].

Let’s suppose A is a function such that A[x] equals the minimum number of
coins necessary to obtain x cents. So for example it’s easy to see that:

A[0] = 0 (No coins.)

A[1] = 1 (One 1-cent coin.)

A[2] = 2 (Two 1-cent coins.)

A[3] = 3 (Three 1-cent coins.)

A[4] = 4 (Four 1-cent coins.)

A[5] = 1 (One 5-cent coin.)

A[6] = 2 (One 5-cent coin and one 1-cent coin.)

Suppose we know A[0], ..., A[x− 1] for some x. Is there a sneaky way to obtain
A[x]?

The answer is fairly easy! In the C = [1, 5, 10] case there are three possibilities:

1. We could first select a 1-cent coin, then obtain x − 1, then combine. We
can do this with A[x− 1] + 1 coins.

2. We could first select a 5-cent coin, then obtain x − 5, then combine. We
can do this with A[x− 5] + 1 coins. Note that this is only a possibility if
x ≥ 5 because if x < 5 then x− 5 < 0 which we can’t do.

3. We could first select a 10-cent coin, then obtain x−10, then combine. We
can do this with A[x− 10] + 1 coins. Note that this is only a possibility if
x ≥ 10 because if x < 10 then x− 10 < 0 which we can’t do.

So what we’ll do is assign A[x] to be the minimum of these three (or rather the
minimum of those that make sense).

Proof. It’s fairly easy to see that this is optimal and here’s the basic proof for
the C = [1, 5, 10] case which generalizes easily:

Assume by way of contradiction that:

A[x] < min {A[x− 1] + 1, A[x− 5] + 1, A[x− 10] + 1}

Suppose the coin combination used to obtain the actual optimal solution for
x involves a c-cent coin where c ∈ {1, 5, 10} (it has to involve at least one of

3



these). Then x− c cents may be obtained by removing a c-cent coin from this
optimal solution for x which implies that A[x− c] ≤ A[x]− 1.

However the assumption tells us that A[x] < A[x− c] + 1 and so we have:

A[x] < A[x− c] + 1 ≤ (A[x]− 1) + 1 = A[x]

This is a contradiction. QED

Thus we have a way of obtaining A[x] as long as we know all previous values.
To jump-start this process observe that A[0] = 0 because it takes 0 coins to
obtain 0 cents.

Let’s see how this works for A[0] through A[20] with a table. We won’t do all
the values but rather point out some critical ones. We start with:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A[x] 0

For A[1] we look at 1+A[1−1] = 1+A[0] = 1, 1+A[1−5] = 1+A[−4] = BAD,
1 + A[1− 10] = 1 + A[−9] = BAD so we only have one value and so A[1] = 1.

For A[2] we look at 1+A[2−1] = 1+A[1] = 2, 1+A[2−5] = 1+A[−3] = BAD,
1 + A[2− 10] = 1 + A[−8] = BAD so we only have one value and so A[2] = 2.

If we do A[3], A[4] (try them!) we have:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A[x] 0 1 2 3 4

For A[5] we look at 1 +A[5− 1] = 1 +A[4] = 5, 1 +A[5− 5] = 1 +A[0] = 1, and
1 +A[5−10] = 1 +A[−5] = BAD so we have two values and take the minimum
and so A[5] = 1.

For A[6] we look at 1 +A[6− 1] = 1 +A[5] = 2, 1 +A[6− 5] = 1 +A[1] = 2, and
1 +A[6−10] = 1 +A[−4] = BAD so we have two values and take the minimum
and so A[6] = 2.

For A[7] we look at 1 +A[7− 1] = 1 +A[6] = 3, 1 +A[7− 5] = 1 +A[2] = 3, and
1 +A[7−10] = 1 +A[−3] = BAD so we have two values and take the minimum
and so A[7] = 3.

If we do A[8], A[9] (try them!) we have:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A[x] 0 1 2 3 4 1 2 3 4 5

For A[10] we look at 1 +A[10− 1] = 1 +A[9] = 6, 1 +A[10− 5] = 1 +A[5] = 2,
and 1 +A[10− 10] = 1 +A[0] = 1 so we have two values and take the minimum
and so A[10] = 1.

If we continue this process to A[20] we find:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A[x] 0 1 2 3 4 1 2 3 4 5 1 2 3 4 5 3 4 5 6 7 2
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3.2 An Algorithm

The preceeding idea can then give us a nice algorithm. Suppose C is a list of coin
denominations, so for example C = [1, 5, 10] in the example we’ve been working
through. This algorithm will find A[x] for x = 1, ..., n for some maximum n:

A = empty list which can grow as needed

A[0] = 0

C = list of coin denominations

for x = 1 to n:

howmanycoins = infinity

for each coin in C:

if x - coin >= 0:

howmanycoins = min(howmanycoins ,1+A[x - coin])

end if

end for

A[x] = howmanycoins

end for

Take a minute to digest how this works. For each n up to and including n = x
we iterate through the coins looking at each x − coin and for those that make
sense we obtain the minimum of all the 1 + A[x− coin] values.

3.3 Time Complexity

While we haven’t (yet) discussed time complexity in detail in this course there
are two things we can observe:

• There are two loops - the outer loop iterates n times and the inner loop
iterates length(C) times and so the innermost body iterates nlength(C)
times.

• This is an approach known as dynamic programming which typically means
that we use earlier solutions to efficiently calculate later ones. In this case
we saw that to calculate A[x] we use inputs smaller than x. Once we know
the values up to A[x− 1], finding A[x] is quick.

4 Counting the Ways

4.1 Introduction

Now let’s consider the problem of how many ways we can obtain n cents. We’ll
go back to our initial currencies of 1, 5, and 10.

For specific values of n we can brute-force this. For example for n = 10 we can
do:

• Ten 1-cent coins.
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• Two 5-cent coins.

• One 10-cent coin.

• One 5-cent coin and five 1-cent coins.

Thus we have a total of 4 ways.

Suppose we wished to write an algorithm which would give the answer for any
given n. How might we go about this? Moreover what if we had a different set
of coins rather than 1,5,10?

4.2 A Dynamic Programming Approach

Before creating a general approach (which will lead to an algorithm) consider
the following observation:

Suppose we have two coin denominations 2 and 5. If n = 12 then it’s easy to
see that there is 1 way to obtain n = 12 using only 2-cent coins. How about if
we also allow 5-cent coins? Observe that we have a disjoint sum:

# ways to get 12 using 2 and/or 5 = # ways to get 12 using 2

+ # ways to get 12 using 2 and at least one 5

We know the first summand is 1. For the second summand once we choose
to use a single 5-cent coin we have 7 cents left to obtain and we can do that
however we wish. Thus:

# ways to get 12 using 2 and/or 5 = # ways to get 12 using 2

+ # ways to get 7 using 2 and/or 5

Take a moment to see what we have observed here. As a general rule for some
n and two denominations c1 and c2 we have:

# ways to get n using c1 and/or c2 = # ways to get n using c1

+ # ways to get n− c2 using c1 and/or c2

This generalizes even futher with a set of coin denominations [c1, ..., cr]:

# ways to get n using c1, ..., cr = # ways to get n using c1, ..., cr−1

+ # ways to get n− cr using c1, ..., cr

Before proceeding note that the above is only true if n ≥ cr since otherwise we
can’t use a cr denomination coin at all. Thus more accurately:
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• If n ≥ cr then:

# ways to get n using c1, ..., cr = # ways to get n using c1, ..., cr−1

+ # ways to get n− cr using c1, ..., cr

• Otherwise we simply have:

# ways to get n using c1, ..., cr = # ways to get n using c1, ..., cr−1

4.3 An Algorithmic Idea

The above observation leads to the following. Suppose we have coin denomina-
tions [c1, ..., cr] and wanted to know the number of ways to obtain n cents using
any combinations of these denominations.

Suppose we have an array A indexed 0 through n and we have some k < n such
that:

• A[0],...,A[k] contain the number of ways to obtain 0 through k cents using
any denominations from c1 through cr.

• A[k + 1],...,A[n] contain the number of ways to obtain 0 through k cents
using any denominations from c1 through cr−1.

Suppose we wish to update A[k + 1] so that it contains the number of ways to
obtain k + 1 using any denominations from c1 through cr.

From the above rule we immediately see that:

• If n ≥ cr then we update it as follows:

A[k + 1] := A[k + 1] + A[k + 1− cr]

• Otherwise we leave it alone.

4.4 An Actual Algorithm

Our algorithmic approach will emerge from this idea. We will start with such
an array and pre-load it with the number of ways to achieve each of 0, 1, ..., n
using no coins. Then we will update it with the number of ways to do so using
just c1, then we will update it with the number of ways to do so using c1 and/or
c2, and so on, until we are done.

On to the algorithm!

Suppose we have coin denominations C = [c1, ..., cr] and we wish to find the
number of ways to obtain n cents using any denomination from c1 through cr.

We first assign an array A indexed 0 through n as follows:

A = [1, 0, 0, ..., 0]
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In this array, A[i] tells us the number of ways to obtain 0 through n cents using
no coins at all.

We then iterate over the denominations and update accordingly. Here is the
pseudocode:

function coincount(C,n):

A = [1,0,0,...,0]

for c in C:

for i = 1 to n:

if i >= c:

A[i] = A[i] + A[i-c]

end if

end for

end for

end function
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Example 4.1. Let us walk through this with n=10 and C = [1,5,10].

We assign:

A = [1,0,0,0,0,0,0,0,0,0,0]

Observe that A now contains the number of ways to obtain 0 through 10
using no coins.

We assign c = 1 and pass through i = 1,2,...,10 yielding:

A = [1,1,1,1,1,1,1,1,1,1,1]

Observe that A now contains the number of ways to obtain 0 through 10
using just 1-cent coins.

We assign c = 5 and pass through i = 1,2,...,10 yielding:

A = [1,1,1,1,1,2,2,2,2,2,3]

Observe that A now contains the number of ways to obtain 0 through 10
using 1- and 5-cent coins.

We assign c = 10 and pass through i = 1,2,...,10 yielding:

A = [1,1,1,1,1,2,2,2,2,2,4]

Observe that A now contains the number of ways to obtain 0 through 10
using 1-, 5-, and 10-cent coins.

Example 4.2. Let us walk through this with n=15 and C = [2,5,7].

We assign:

A = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Observe that A now contains the number of ways to obtain 0 through 15
using no coins.

We assign c = 2 and pass through i = 1,2,...,15 yielding:

A = [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]

Observe that A now contains the number of ways to obtain 0 through 15
using just 2-cent coins.

We assign c = 5 and pass through i = 1,2,...,15 yielding:

A = [1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1]

Observe that A now contains the number of ways to obtain 0 through 15
using 2- and 5-cent coins.

We assign c = 7 and pass through i = 1,2,...,15 yielding:

A = [1,0,1,0,1,1,1,2,1,2,1,2,2,2,3,2]

Observe that A now contains the number of ways to obtain 0 through 15
using 2-, 5-, and 7-cent coins.

9



4.5 Time Complexity

We have not formally started talking about time complexity but for now it
is absolutely worth simply mentioning that the algorithm involves two nested
loops such that the innermost body iterates length(C) (n + 1) time.

Thus intuitively the time required increases linearly as a function of either n or
the number of denominations available.
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