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1 What it Does

Sorts a list of (preferably small) nonnegative integers for which we know the
maximum. This can be tweaked to do a bit more.

2 How it Works

Counting sort works by counting the number of each integer and creating a new
list with that information.

For example consider this list:

3 10 4 3 4 5 4 3 5 6 1 3 0A

Knowing that the maximum value is 10 we create an list POS with indices from
0 to 10 such that POS[k] contains the count of k in A. The name POS we’re using
may seem a bit weird but it will make sense soon.
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Next we modify POS above by replace it with its cumulative version, meaning
we successively add each entry to the next.
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For a moment observe that this needs to give us the sorted version of A which
looks like this:
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Sorted A

Observe that each POS[i]==j indicates that in the sorted version of the list if
there are any occurrences of i then they end at position j, meaning index j-1.

For example POS[3]==6 which means that in the sorted list the 3s end at position
6, meaing index 5, and POS[4]==9 which means that in the sorted list the 4s
end at position 9, meaning index 8.

Then we construct a new list ANEW by going through A in reverse order, taking
each element, finding the position (and then index) to place it using POS, coping
it over, then decreasing that entry in POS in preparation in case there’s another
value to come. So think about A as the input list, POS as the processing list,
and ANEW as the output list.

We go in reverse order to make the sorting stable. Observe that duplicate
values get filled into ANEW from right-to-left and so we should reverse through A

to match that.
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You may have wondered why we don’t just use the first POS list to build a new list
by simply going through POS and writing that many of each value. The reason
is that we are typically thinking of the number in our list as keys which are
associated with lots of data. This means we are not simply sorting numbers but
rather we are moving around troves of information associated to those numbers.
Consequently our creation of ANEW should be treated as though it is not just
writing individual numbers but copying over that associated information.

Here are the first two steps:

A[12]==0 (the value) and POS[0]==1 (the position, one more than the index,
to put it) so assign ANEW[1-1]=0...

3 10 4 3 4 5 4 3 5 6 1 3 0A
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...and update POS[0]=0 (ready for the next 0, which there isn’t one).

A[11]==3 (the value) and POS[3]==6 (the position, one more than the index,
to put it) so assign ANEW[6-1]=3...

3 10 4 3 4 5 4 3 5 6 1 3 0A
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...and update POS[3]=5 (ready for the next 3, which there is one).

And so on until we have filled up ANEW. Typically we then copy ANEW back to A.

The reason for going through A in reverse order is that it results in CountingSort
being stable.

3



3 Pseudocode and Time Complexity

Here is the pseudocode:

\\ PRE: A is a list of length n with minimum 0 and maximum k

POS = list of zeros of length k+1

ANEW = list of zeros of length n

for i = 0 to n-1

POS[A[i]] = POS[A[i]] + 1

end

for i = 1 to k

POS[i] = POS[i] + POS[i-1]

end

for i = n-1 down to 0

ANEW[POS[A[i]]-1] = A[i]

POS[A[i]] = POS[A[i]] - 1

end

for i = 0 to n-1

A[i] = ANEW[i]

end

\\ POST: A is sorted.

Note 3.0.1. If A is given but k is not we can simply add a simple loop to
calculate it first since it’s the maximum of the list. This process is Θ(n).

Best-, Worst-, and Average-Cases:

In most languages to allocate an empty list of length n it takes Θ(n) time, so
our initial assignments of POS and ANEW take Θ(k) and Θ(n) respectively. Note
that this is the first time that something other than n is showing in our time
complexity.

We then iterate the four for loops which take time Θ(n), Θ(k), Θ(n), and Θ(n)
respectively.

All together this is then Θ(n + k). This is the same for best-case, worst-case,
and average-case.

If this is confusing, think of n + k as a single variable, so what this means is
that there are B,C > 0 and some index m0 such that:

If n + k ≥ m0 then B(n + k) ≤ T (n, k) ≤ C(n + k)

Note 3.0.2. If k is a fixed constant and we let n vary then the time complexity
is Θ(n).

Note 3.0.3. If k is not fixed but we can guarantee that k ≤ n then the time
complexity is Θ(n).
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4 Auxiliary Space

CountingSort uses Θ(n+k) auxiliary space since it is required to create the POS

list as well as the ANEW list.

5 Stability

Our particular pseudocode implementation of CountingSort is stable.

6 In-Place

CountingSort is not in-place.

7 Usage Note

CountingSort can be modified to manage other types of data. See the exercises
for examples. It is often used as an auxiliary method inside other methods like
RadixSort.
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8 Thoughts, Problems, Ideas

1. Suppose k1, k2 ∈ Z with k1 < k2. Suppose every x in your list is an integer
satisfying k1 ≤ x ≤ k2. Modify CountingSort so that it can manage this
list. What would the Θ time complexity be?

2. Suppose k1, k2 ∈ R with k1 < k2 and both having at most one digit after
the decimal point. Suppose every x in your list is a real number satisfying
k1 ≤ x ≤ k2 with x having at most one digit after the decimal point.
Modify CountingSort so that it can manage this list. What would the Θ
time complexity be?

3. Suppose d ∈ Z with d ≥ 0, k1, k2 ∈ R with k1 < k2 and both having at
most d digits after the decimal point. Suppose every x in your list is a
real number satisfying k1 ≤ x ≤ k2 with x having at most d digits after
the decimal point. Modify CountingSort so that it can manage this list.
What would the Θ time complexity be?
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9 Python Test

Code:

import random

A = []

k = 5

n = 10

for i in range(0,n):

A.append(random.randint(0,k))

print(A)

ANEW = [0] * n

LOC = [0] * (k+1)

for i in range(0,n):

LOC[A[i]] = LOC[A[i]] + 1

print(’Count array: ’+str(LOC))

for i in range(1,k+1):

LOC[i] = LOC[i] + LOC[i-1]

print(’Cumulative count array: ’+str(LOC))

for i in range(n-1,-1,-1):

ANEW[LOC[A[i]]-1] = A[i]

LOC[A[i]] = LOC[A[i]] - 1

print(’Positioning A[’+str(i)+’] in position ’+str(LOC[A[i]] -1))

print(’Result: ’+str(ANEW))

for i in range(0,n):

A[i] = ANEW[i]

print(A)
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Output:

[3, 2, 0, 5, 2, 5, 0, 1, 2, 1]

Count list: [2, 2, 3, 1, 0, 2]

Cumulative count list: [2, 4, 7, 8, 8, 10]

Positioning A[9] in position 2

Result: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

Positioning A[8] in position 5

Result: [0, 0, 0, 1, 0, 0, 2, 0, 0, 0]

Positioning A[7] in position 1

Result: [0, 0, 1, 1, 0, 0, 2, 0, 0, 0]

Positioning A[6] in position 0

Result: [0, 0, 1, 1, 0, 0, 2, 0, 0, 0]

Positioning A[5] in position 8

Result: [0, 0, 1, 1, 0, 0, 2, 0, 0, 5]

Positioning A[4] in position 4

Result: [0, 0, 1, 1, 0, 2, 2, 0, 0, 5]

Positioning A[3] in position 7

Result: [0, 0, 1, 1, 0, 2, 2, 0, 5, 5]

Positioning A[2] in position -1

Result: [0, 0, 1, 1, 0, 2, 2, 0, 5, 5]

Positioning A[1] in position 3

Result: [0, 0, 1, 1, 2, 2, 2, 0, 5, 5]

Positioning A[0] in position 6

Result: [0, 0, 1, 1, 2, 2, 2, 3, 5, 5]

[0, 0, 1, 1, 2, 2, 2, 3, 5, 5]
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