
CMSC 351: Depth-First Traverse

Justin Wyss-Gallifent

November 2, 2024

1 Introduction: . 2
2 Intuition . 2
3 Visualization . 2
4 Algorithm Implementation . 2
5 Recursive Implementation . 3

5.1 Pseudocode . 3
5.2 Pseudocode Time Complexity 4

6 Simple Stack Implementation . 5
6.1 Pseudocode . 5
6.2 Pseudocode Time Complexity 7

7 Fancy Stack Implementation . 8
7.1 Introduction . 8
7.2 Pseudocode . 10
7.3 Pseudocode Time Complexity 12

1

1 Introduction:

Suppose we are given a graph G and a starting node s. Suppose we wish to
simply traverse the graph in some way looking for a particular value associated
with a node. We’re not interested in minimizing distance or cost or any such
thing, we’re just interested in the traversal process.

2 Intuition

One classic way to go about this is a depth-first traverse. The intuitive idea is
that starting with a starting node s we follow one path as far as possible before
backtracking. When we backtrack we only do so as little as possible until we
can go deeper again.

Observe that this description does not lead to a unique traversal because there
may be multiple paths that we can follow from a given vertex.

3 Visualization

Before writing down some explicit pseudocode let’s look at an easy graph and
look at how the above intuition might pan out. Consider this graph:

0

12

3

4

Suppose we start at the vertex s = 0. We have three edges we can follow, let’s
suppose we follow the edge to the vertex 3 first. From 3 we can only go to 1 (we
can’t go back to 0 since we’ve visited it already) and then to 4 (we can’t go back
to 0 or 3). At that point we have gone as deep as we can along that branch so we
go back to the most recent branch for which there are other paths available. We
have to go back to 0 and from there we go to 2. Thus our depth-first traverse
follows the vertices in order 0, 3, 1, 4, 2.

4 Algorithm Implementation

There are several classic approaches to constructing an algorithm for depth-first
traverse:

• Using recursion.

• Using a stack and allowing elements to be on that stack more than once
and just ignoring later encounters. We’ll call this the Simple Stack.

• Using a stack and only allowing elements to be on the stack once. We’ll
call this the Fancy Stack.

2

5 Recursive Implementation

5.1 Pseudocode

The pseudocode for the recursive implementation is as follows:

// These are global.

VORDER = []

VISITED = list of length V full of FALSE

function dft(G,x):

VORDER.append(x)

VISITED[x] = TRUE

for all adjacent nodes y (in some order)

if VISITED[y] == FALSE

dft(G,y)

end if

end for

end function

dft(G,s)

In this pseudocode the list VORDER will record the order in which we visit the
vertices while the list VISITED will indicate whether or not a vertex has been
visited.

The line:

for all adjacent nodes y (in some order)

does not suggest which order we should follow the adjacent nodes in. In what
follows we’ll follow them in decreasing order.

Example 5.1. Let’s return to our example from earlier:

0

12

3

4

We’ll start our traversal at the vertex x = 0. Before the function is called
we have:

index 0 1 2 3 4

VORDER
VISITED F F F F F

Our first call is dft(G,0) and before the for loop we then have:

index 0 1 2 3 4

VORDER 0
VISITED T F F F F

3

The for loop cycles through the vertices 3,2,1 (call this depth 1) and the
first call is dft(G,3) which yields, before its own for loop:

index 0 1 2 3 4

VORDER 0 3
VISITED T F F T F

From dft(G,3) the for loop cycles through the vertices 1,0 (call this depth
2) and the first call is dft(G,1) which yields, before its own for loop:

index 0 1 2 3 4

VORDER 0 3 1
VISITED T T F T F

From dft(G,1) the for loop cycles through the vertices 4,0 (call this depth
3) and the first call is dft(G,4) which yields, before its own for loop:

index 0 1 2 3 4

VORDER 0 3 1 4
VISITED T T F T T

From dft(G,4) the for loop cycles through the vertices 1 (call this depth
4) but since that vertex has been visited, dft is not called on it again and
we are sent back to depth 3 and our loop is on vertex 0 but since that vertex
has been visited, dft is not called on it again and we are sent back to depth
2 and our loop is on vertex 0 but since that vertex has been visited, dft is
not called on it again and we are sent back to depth 1 and our loop is on
vertex 2 so we call dft(G,2) which yields, before its own for loop:

index 0 1 2 3 4

VORDER 0 3 1 4 2
VISITED T T T T T

From dft(G,2) the for loop cycles through the vertices 0 but since that
vertex has been visited, dft is not called on it again and we are sent back to
depth 1 and our loop is on vertex 1 but since that vertex has been visited,
dft is not called on it again.

Then we are done. Observe that the order in which we visited the nodes is
0, 3, 1, 4, 2.

5.2 Pseudocode Time Complexity

Suppose V is the number of nodes and E is the number of edges. What follows is
exactly the same as breadth-first traverse so if that made sense you can possibly
skip this.

• The initialization takes O(V). This could in fact take Θ(1) depending on
the architecture but the choice has no effect on the result.

• Each node gets processed once so this is V Θ(1) each for a total of Θ(V).

4

• Since each edge is attached to two nodes the for loop will iterate a total
of 2E times over the course of the entire algorithm. This gives a total of
Θ(2E) = Θ(E).

The time complexity is therefore O(V) + Θ(V) + Θ(E) = O(V + E). If initial-
ization is actually Θ(1) then this becomes Θ(V + E).

Note 5.2.1. Note that our pseudocode and analysis assumes we have direct
access to a node’s edges using something like an adjacency list. If we use an
adjacency matrix then the inner loop becomes Θ(V) and the entire pseucode
becomes Θ(V 2).

6 Simple Stack Implementation

6.1 Pseudocode

The pseudocode for the simple stack implementation is as follows:

VORDER = []

VISITED = list of length V full of FALSE

STACK = [s]

while STACK is not empty:

x = STACK.pop()

if VISITED[x] == FALSE:

VISITED[x] = TRUE

VORDER.append(x)

for all nodes y adjacent to x:

if VISITED[y] == FALSE:

STACK.push(y)

end if

end for

end if

end while

The line:

for all nodes y adjacent to x

does not suggest which order we should follow the adjacent nodes in. In what
follows we’ll follow them in increasing order.

Example 6.1. Let’s return to our example from earlier:

0

12

3

4

We’ll start our traversal at the vertex x = 0. We start with the following

5

before the while loop:

S = [0]
index 0 1 2 3 4

VORDER
VISITED F F F F F

Iterate! We pop x = 0 off the stack. Since it’s not visited we mark it as such
and append it to the visiting order. We then iterate over the vertices 1, 2, 3
and push them all onto the stack:

S = [1,2,3]
index 0 1 2 3 4

VORDER 0
VISITED T F F F F

Iterate! We pop x = 3 off the stack. Since it’s not visited we mark it as
such and append it to the visiting order. We then iterate over the vertices
0, 1 and push 1 (but not 0) onto the stack:

S = [1,2,1]
index 0 1 2 3 4

VORDER 0 3
VISITED T F F T F

Iterate! We pop x = 1 off the stack. Since it’s not visited we mark it as such
and append it to the visiting order. We then iterate over the vertices 0, 3, 4
and push 4 (but not 0, 3) onto the stack:

S = [1,2,4]
index 0 1 2 3 4

VORDER 0 3 1
VISITED T T F T F

Iterate! We pop x = 4 off the stack. Since it’s not visited we mark it as
such and append it to the visiting order. We then iterate over the vertex 1
but nothing is pushed onto the stack:

S = [1,2]
index 0 1 2 3 4

VORDER 0 3 1 4
VISITED T T F T T

Iterate! We pop x = 2 off the stack. Since it’s not visited we mark it as
such and append it to the visting order. We then iterate over the vertex 0
but nothing is pushed onto the stack:

S = [1]

6

index 0 1 2 3 4

VORDER 0 3 1 4 2
VISITED T T T T T

Iterate! We pop x = 1 off the stack. Since it’s visited we do nothing with
it. We then iterate over the vertices 0, 3, 4 but nothing is pushed onto the
stack:

S = []
index 0 1 2 3 4

VORDER 0 3 1 4 2
VISITED T T T T T

Then we are done. Observe that the order in which we visited the nodes is
0, 3, 1, 4, 2.

6.2 Pseudocode Time Complexity

The time complexity of this pseudocode is not immediately easy to see since we
are not sure exactly how many times the while loop will run, given that we are
allowing vertices on the stack more than once. However the following facts are
certain:

• The body of the while loop iterates once for each vertex popped off the
stack. Since vertices may be on the stack more than once we don’t know
how many times this will be without knowing more about the structure of
the graph. Suppose we say that the while loop runs W times with W ≥ V .
Since the if statement passes exactly V times we can break the while

loop into two categories - the V times where the if statement passes and
the W − V times when it fails.

• Focusing only on each of the the W − V times when the if statement
fails. the body of the while loop takes time Θ(1). This gives a total time
(W − V)Θ(1) = Θ(W − V) for all if statement failures together.

• If we are using an adjacency matrix then focusing only on each of the V
times when the if statement passes, the for loop iterates V times taking
time Θ(1) for a total of V Θ(1) = Θ(V). This gives a total time Θ(V 2) for
all if statement passes together.

Together then if we are using an adjacency matrix then the total time for
the pseudocode is Θ(W − V) + Θ(V 2).

• If we are using an adjacency list let’s ignore the for loop for a minute.
Focusing only on each of the the V times when the if statement passes,
the body of the if statement takes time Θ(1). This gives a total time
Θ(V) for all if statement passes together.

But then the body of the for loop, over the course of the entire algorithm,
iterates 2E times for a total time Θ(2E).

7

Together then if we are using an adjacency list then the total time is
Θ(W − V) + Θ(V) + Θ(V + E).

So now we have:

• In the best-case W = V (there are no stack repeats) which can happen for
a star graph starting at the star point. In that case the adjacency matrix
has time:

Θ(W − V) + Θ(V 2) = Θ(V − V) + Θ(V 2) = Θ(V 2)

And the adjacency list has time:

Θ(W−V)+Θ(V)+Θ(V +E) = Θ(V −V)+Θ(V)+Θ(V +E) = Θ(V +E)

• In the worst case every vertex is connected to every other vertex in which
case the algorithm proceeds as follows:

We start by pushing the starting vertex onto the stack. When we pop
this vertex there is 1 visited vertex and the for loop will push all of the
remaining V − 1 (unvisited) vertices onto the stack.

When we pop the next vertex there are 2 visited vertices and the for loop
will push V − 2 (unvisited) vertices onto the stack, all of which will be
repeats.

This will repeat through the entire process and all together the number
of vertices which get pushed onto the stack and hence the number of
iterations of the while loop will be:

W = 1 + (V − 1) + (V − 2) + ... + 2 + 1 + 0 = 1 + 0.5V (V − 1)

In this case then the adjacency matrix has time:

Θ(W − V) + Θ(V 2) = Θ(1 + 0.5V (V − 1)− V) + Θ(V 2) = Θ(V 2)

And the adjacency list has time:

Θ(W−V)+Θ(V)+Θ(V +E) = Θ(1+0.5V (V−1)−V)+Θ(V)+Θ(V +E) = Θ(V 2+E)

Note 6.2.1. I’ve seen places where people say that this implementation is
Θ(V + E) in all cases when an adjacency list is used but clearly this is false.

7 Fancy Stack Implementation

7.1 Introduction

It is possible to modify the stack version to bring it down to Θ(V + E) in all
cases provided an adjacency list is used.. The trick is to find a way to ensure

8

that an item is only ever popped off the stack once, but we can’t be sloppy
about it. In theory there are two ways to go about this. When we are about to
push something onto the stack, other than checking if it has been visited:

(a) We check whether it has been or still is on the stack and if so, we don’t
push it.

(b) We check whether it has been on the stack, we don’t push it, and if it is on
the stack, we remove the earlier occurrence.

While (a) seems easier to do it does not work, as is easily demonstrated by this
graph:

0 1

32

Examine approach (a). Let’s start at 0, so S = [0]. We then pop x = 0
(marking it as visited) and suppose we push 3, 2, 1 onto the stack in that order,
so S = [3, 2, 1]. We then pop x = 1 (marking it as visited) and don’t push
anything, so S = [3, 2]. We then pop x = 2 (marking it as visited) and don’t
push anything, so S = [3]. We then pop x = 3 (marking it as visited), and don’t
push anything, so S = [], and then we are done. However we have now visited
the vertices in the order 0, 1, 2, 3 which is not a DFT since after visiting 1 we
should go to 3.

On the other hand examine approach (b). Let’s start at 0, so S = [0]. We then
pop x = 0 (marking it as visited) and suppose we push 3, 2, 1 onto the stack
in that order, so S = [3, 2, 1]. We then pop x = 1 (marking it as visited) and
we push 3, replacing the earlier occurrence, so S = [2, 3]. We then pop x = 3
(marking it as visited) and we push nothing, so S = [2]. We then pop x = 2
(marking it as visited) and don’t push anything, so S = [], and then we are
done. Now we have visited the vertices in the order 0, 1, 3, 2.

Before digging into (b) recall that for (b) we need to be able to detect if an
element is on the stack and remove an element from the stack both as quickly
as possible. It turns out that both can be done by setting the stack up as a
doubly-linked list with a helper array which is indexed by the elements and for
each element points to either the element on the stack or NULL if it is not on
the stack. In this way we can use the pointers to know if an element is on the
stack in Θ(1) time and the doubly-linked list allows us to remove that element
from the stack in Θ(1) time.

9

7.2 Pseudocode

In this pseudocode we won’t fiddle with the details of pointers or removal:

VORDER = []

VISITED = list of length V full of FALSE

STACK = [s]

while STACK is not empty:

x = STACK.pop()

VISITED[x] = TRUE

VORDER.append(x)

for all nodes y adjacent to x:

if VISITED[y] == FALSE:

if y on STACK:

STACK.remove(y)

end if

STACK.push(y)

end if

end for

end while

The line:

for all adjacent nodes y (in some order)

does not suggest which order we should follow the adjacent nodes in. In what
follows we’ll follow them in increasing order.

Example 7.1. Let’s return to our example from earlier:

0

12

3

4

Illustrating the pointers is a bit of a pain so we will avoid doing so. Instead
the critical difference between this implementation and the stack implemen-
tation is that whenever a vertex is pushed onto the stack we check if it is
already on the stack and if so we delete its earlier occurence. In what follows
this is the only significant difference.

We’ll start our traversal at the vertex x = 0. We start with the following
before the while loop:

S = [0]
index 0 1 2 3 4

VORDER
VISITED F F F F F

Iterate! We pop x = 0 off the stack. Since it’s not visited we mark it as such

10

and append it to the visiting order. We then iterate over the vertices 1, 2, 3
and push them all onto the stack:

S = [1,2,3]
index 0 1 2 3 4

VORDER 0
VISITED T F F F F

Iterate! We pop x = 3 off the stack. Since it’s not visited we mark it as
such and append it to the visiting order. We then iterate over the vertices
0, 1 and push 1 (but not 0) onto the stack which deletes the earlier 1:

S = [2,1]
index 0 1 2 3 4

VORDER 0 3
VISITED T F F T F

Iterate! We pop x = 1 off the stack. Since it’s not visited we mark it as such
and append it to the visiting order. We then iterate over the vertices 0, 3, 4
and push 4 (but not 0, 3) onto the stack:

S = [2,4]
index 0 1 2 3 4

VORDER 0 3 1
VISITED T T F T F

Iterate! We pop x = 4 off the stack. Since it’s not visited we mark it as
such and append it to the visiting order. We then iterate over the vertex 1
but nothing is pushed onto the stack:

S = [2]
index 0 1 2 3 4

VORDER 0 3 1 4
VISITED T T F T T

Iterate! We pop x = 2 off the stack. Since it’s not visited we mark it as
such and append it to the visting order. We then iterate over the vertex 0
but nothing is pushed onto the stack:

S = []
index 0 1 2 3 4

VORDER 0 3 1 4 2
VISITED T T T T T

Then we are done. Observe that the order in which we visited the nodes is
0, 3, 1, 4, 2.

11

7.3 Pseudocode Time Complexity

With this modification the while loop iterates exactly V times and the time
complexity is exactly as for the Shortest Path Algorithm and Breadth-First
Search.

Thus f the graph is stored as an adjacency matrix then the time is Θ(V 2) and
if the graph is stored as an adjacency list then the time is Θ(V + E).

12

	Introduction:
	Intuition
	Visualization
	Algorithm Implementation
	Recursive Implementation
	Pseudocode
	Pseudocode Time Complexity

	Simple Stack Implementation
	Pseudocode
	Pseudocode Time Complexity

	Fancy Stack Implementation
	Introduction
	Pseudocode
	Pseudocode Time Complexity

