CMSC 351: Depth-First Traverse

Justin Wyss-Gallifent

November 6, 2023

[TIntroductiond
B Tnfuifionl . . .« o .o e e
13 Visualizationl
K Algorithm Implementation|.
15 Recursive Implementation|
D.1 seudocodel
5.2 Pseudocode Time Complexity|.
|6 Stack Implementation| L.
6.1 Pseudocodel oo
6.2 Pseudocode Time Complexityl.
[77Stack/Doubly-Linked-List Implementation]
[[1— Tntroductionlot
(.2 Pseudocodel o
7.3 Pseudocode Time Complexity|.

1 Introduction:

Suppose we are given a graph G and a starting node s. Suppose we wish to
simply traverse the graph in some way looking for a particular value associated
with a node. We're not interested in minimizing distance or cost or any such
thing, we’re just interested in the traversal process.

2 Intuition

One classic way to go about this is a depth-first traverse. The intuitive idea is
that starting with a starting node s we follow one path as far as possible before
backtracking. When we backtrack we only do so as little as possible until we
can go deeper again.

Observe that this description does not lead to a unique traversal because there
may be multiple paths that we can follow from a given vertex.

3 Visualization

Before writing down some explicit pseudocode let’s look at an easy graph and
look at how the above intuition might pan out. Consider this graph:

@ OO
G

Suppose we start at the vertex s = 0. We have three edges we can follow, let’s
suppose we follow the edge to the vertex 3 first. From 3 we can only go to 1 (we
can’t go back to 0 since we’ve visited it already) and then to 4 (we can’t go back
to 0 or 3). At that point we have gone as deep as we can along that branch so we
go back to the most recent branch for which there are other paths available. We
have to go back to 0 and from there we go to 2. Thus our depth-first traverse
follows the vertices in order 0, 3,1,4, 2.

4 Algorithm Implementation
There are several classic approaches to constructing an algorithm for depth-first
search to which we will add one more for reasons we shall make clear:

e Using recursion.

e Using a stack.

e Using a stack which is modified to be a doubly-linked-list.

5 Recursive Implementation

5.1 Pseudocode

The pseudocode for the recursive implementation is as follows:

// These are global.
VORDER = []
VISITED = 1list of length V full of FALSE
function dft(G,x):
VORDER . append (x)
VISITED [x] = TRUE
for all adjacent nodes y (in some order)
if VISITED[y] == FALSE
dft (G,y)
end if
end for
end function
dft (G,s)

In this pseudocode the list VORDER will record the order in which we visit the
vertices while the list VISITED will indicate whether or not a vertex has been
visited.

The line:
for all adjacent nodes y (in some order)

does not suggest which order we should follow the adjacent nodes in. In what
follows we’ll follow them in decreasing order.

Example 5.1. Let’s return to our example from earlier:
@ O—®
Q@

We'll start our traversal at the vertex © = 0. Before the function is called
we have:

[Tdex JO[1[2[3[4]
VORDER
VISITED || F | F|F | F|F
Our first call is dft(G,0) and before the for loop we then have:
[fdex JO[1[2[3[4]
VORDER || 0
VISITED || T | F|F |F | F

The for loop cycles through the vertices 3,2,1 (call this depth 1) and the
first call is dft (G, 3) which yields, before its own for loop:

[dex [O[1[2][3][4]
VORDER || 0 | 3
VISITED (| T |F | F | T |F

From dft (G, 3) the for loop cycles through the vertices 1,0 (call this depth
2) and the first call is dft(G,1) which yields, before its own for loop:

[index [0 [1]2[3]4]
VORDER || 0 | 3 | 1
VISITED | T | T |F | T|F

From dft(G,1) the for loop cycles through the vertices 4,0 (call this depth
3) and the first call is dft(G,4) which yields, before its own for loop:

| index [JOJ1[]2[3[4]
VORDER || 0 [3] 1] 4
VISITED [T[T |F|T]|T

From dft(G,4) the for loop cycles through the vertices 1 (call this depth
4) but since that vertex has been visited, dft is not called on it again and
we are sent back to depth 3 and our loop is on vertex 0 but since that vertex
has been visited, dft is not called on it again and we are sent back to depth
2 and our loop is on vertex 0 but since that vertex has been visited, dft is
not called on it again and we are sent back to depth 1 and our loop is on
vertex 2 so we call dft(G,2) which yields, before its own for loop:

[mdex [[0[1]2[3[4]
VORDER || O | 3 | 1| 4| 2
VISITED (| T | T | T |T| T

From dft(G,2) the for loop cycles through the vertices 0 but since that
vertex has been visited, dft is not called on it again and we are sent back to
depth 1 and our loop is on vertex 1 but since that vertex has been visited,
dft is not called on it again.

Then we are done. Observe that the order in which we visited the nodes is
0,3,1,4,2.

5.2 Pseudocode Time Complexity

Suppose V' is the number of nodes and F is the number of edges. What follows is
exactly the same as breadth-first traverse so if that made sense you can possibly
skip this.

o The initialization takes O(V'). This could in fact take ©(1) depending on
the architecture but the choice has no effect on the result.

e Each node gets processed once so this is VO(1) each for a total of O(V).

e Since each edge is attached to two nodes the for loop will iterate a total

of 2F times over the course of the entire algorithm. This gives a total of
O(2E) = 6(E).

The time complexity is therefore O(V) 4+ O(V) + O(E) = O(V + E). If initial-
ization is actually ©(1) then this becomes O(V + E).

Note 5.2.1. Note that our pseudocode and analysis assumes we have direct
access to a node’s edges using something like an adjacency list. If we use an

adjacency matrix then the inner loop becomes ©(V) and the entire pseucode
becomes O(V?).

6 Stack Implementation

6.1 Pseudocode

The pseudocode for the stack implementation is as follows:

VORDER = []
VISITED = list of length V full of FALSE
STACK = [s]
while STACK is not empty:
x = STACK.pop ()
if VISITED([x] == FALSE:
VISITED[x] = TRUE
VORDER . append (x)
end if
for all nodes y adjacent to x:
if VISITED([y] == FALSE:
STACK . append (y)
end if
end for
end while

The line:
for all nodes y adjacent to x

does not suggest which order we should follow the adjacent nodes in. In what
follows we’ll follow them in increasing order.

Example 6.1. Let’s return to our example from earlier:
@ OO
@6

We'll start our traversal at the vertex x = 0. We start with the following

before the while loop:

|

S = [0]
index “0‘1‘2‘3‘4‘
VORDER
VISITED || F | F | F | F | F

Iterate! We pop x = 0 off the stack. Since it’s not visited we mark it as such
and append it to the visiting order. We then iterate over the vertices 1,2,3

and push them all onto the stack:

S = [1,2,3]
| index [JOJ1[2[3]4]
VORDER][0
VISITED [T [F |[F|F|[F

Iterate! We pop & = 3 off the stack. Since it’s not visited we mark it as
such and append it to the visiting order. We then iterate over the vertices

0,1 and push 1 (but not 0) onto the stack:

S = [1,2,1]
[o0[1[2]3[4]

index
VORDER || 0 | 3
VISITED || T | F | F
Iterate! We pop = = 1 off the stack. Since it’s not visited we mark it as such
and append it to the visiting order. We then iterate over the vertices 0, 3,4

and push 4 (but not 0,3) onto the stack:
S = [1,2,4]

|

T|F

| index [JOJ1[2]3]4]
VORDER [[0 [31
VISITED [T[T |F[T|F

Iterate! We pop x = 4 off the stack. Since it’s not visited we mark it as
such and append it to the visiting order. We then iterate over the vertex 1

but nothing is pushed onto the stack:

|

S = [1’2]
index “0‘1‘2‘3‘4‘
VORDER || 0 | 3 | 1| 4
VISITED (| T | T |F | T | T

Iterate! We pop = = 2 off the stack. Since it’s not visited we mark it as
such and append it to the visting order. We then iterate over the vertex 0

but nothing is pushed onto the stack:
S = 1]

[index [[O]1]2]3]4]
VORDER [[0 [3 [1 [4]2
VISITED [T[T|T|T][T

Iterate! We pop x = 1 off the stack. Since it’s visited we do nothing with
it. We then iterate over the vertices 0, 3,4 but nothing is pushed onto the
stack:

[index [JO[1]2[3]4]
VORDER 11412
VISITED || T | T |T|T|T

Ol O 2
W|| ==

Then we are done. Observe that the order in which we visited the nodes is
0,3,1,4,2.

6.2 Pseudocode Time Complexity

It’s not uncommon for various online sources to give essentially this pseudocode
and state that it has time complexity ©(V + E) but this is false as can be easily
demonstrated.

Consider a graph with V' vertices which is complete, meaning each vertex is
connected to every other vertex. We start by pushing the starting vertex onto
the stack.

When we pop this vertex there is 1 visited vertex and the for loop will push all
of the remaining V' — 1 (unvisited) vertices onto the stack.

When we pop the next vertex there are 2 visited vertices and the for loop will
push V — 2 (unvisited) vertices onto the stack, all of which will be repeats.

This will repeat through the entire process and all together the number of
vertices which get pushed onto the stack will be:

(V-1D)

1+ (V-1 +(V-2)+..+2+14+0=1+ 5

=0(V?
Since the while loop iterates once for each vertex on the stack it will iterate
O(V?) times.

The for loop will (as with the argument for the recursive implementation)
iterate 2F times for a final time complexity of O(V?2 + E).

7 Stack/Doubly-Linked-List Implementation

7.1 Introduction

It is possible to modify the stack version to bring it down to ©(V + E). The
trick is to find a way to ensure that an item is only ever popped off the stack

once, but we can’t be sloppy about it. In theory there are two ways to go about
this. When we are about to push something onto the stack, other than checking
if it has been visited:

(a) We check whether it has been or still is on the stack and if so, we don’t
push it.

(b) We check whether it has been on the stack, we don’t push it, and if it is on
the stack, we remove the earlier occurrence.

While (a) seems easier to do it does not work, as is easily demonstrated by this

graph:
@ &
@G

Examine approach (a). Let’s start at 0, so S = [0]. We then pop z = 0
(marking it as visited) and suppose we push 3, 2, 1 onto the stack in that order,
so S = [3,2,1]. We then pop z = 1 (marking it as visited) and don’t push
anything, so S = [3,2]. We then pop x = 2 (marking it as visited) and don’t
push anything, so S = [3]. We then pop « = 3 (marking it as visited), and don’t
push anything, so S = [], and then we are done. However we have now visited
the vertices in the order 0,1, 2,3 which is not a BFT since after visiting 1 we
should go to 3.

On the other hand examine approach (b). Let’s start at 0, so S = [0]. We then
pop & = 0 (marking it as visited) and suppose we push 3, 2, 1 onto the stack
in that order, so S = [3,2,1]. We then pop x = 1 (marking it as visited) and
we push 3, replacing the earlier occurrence, so S = [2,3]. We then pop x = 3
(marking it as visited) and we push 2, replacing the earlier occurrence (a bit
silly), so S = [2]. We then pop z = 2 (marking it as visited) and don’t push
anything, so S = [], and then we are done. Now we have visited the vertices in
the order 0,1, 3, 2.

One way to accomplish (b) is to turn the stack into a doubly-linked-list and
to keep an array of pointers, one for each vertex, which point to the vertex’s
location on the stack and are NULL by default. When a vertex is pushed onto
the stack we check if its pointer is NULL and if not then we remove the previous
vertex from within the stack (this is ©(1) for a doubly-linked-list) and then push
it on the end of the stack and update the pointer.

7.2 Pseudocode

The pseudocode for this new implementation is as follows:

VORDER = []
STACK = [s] (functions as doubly-linked-1list)
VISITED = list of length V full of FALSE
SP = list of length V full of NULL pointers
SP[x] = points to x in STACK
while STACK is not empty:
x = STACK.pop ()
if VISITED[x] == FALSE:
VISITED [x] = TRUE
VORDER . append (x)

end if
for all nodes y adjacent to x:
if VISITED[y] == FALSE:
if SP[y] != NULL:
delete y from STACK
end if
STACK . append (y)
SP[y] = point to y in STACK
end if
end for

end while

The line:
for all adjacent nodes y (in some order)

does not suggest which order we should follow the adjacent nodes in. In what
follows we’ll follow them in increasing order.

Example 7.1. Let’s return to our example from earlier:
@ O
09

Ilustrating the pointers is a bit of a pain so we will avoid doing so. Instead
the critical difference between this implementation and the stack implemen-
tation is that whenever a vertex is pushed onto the stack we check if it is
already on the stack and if so we delete its earlier occurence. In what follows
this is the only significant difference.

We'll start our traversal at the vertex x = 0. We start with the following
before the while loop:

| index [[O]1]2[3[4]
VORDER
VISITED [[F|[F[F|F[F

Iterate! We pop x = 0 off the stack. Since it’s not visited we mark it as such
and append it to the visiting order. We then iterate over the vertices 1,2,3

and push them all onto the stack:

|

S =[1,2,3]
dex [[0]1]2[3]4]
VORDER || 0
VISITED (| T |F |F | F | F

Iterate! We pop z = 3 off the stack. Since it’s not visited we mark it as
such and append it to the visiting order. We then iterate over the vertices
0,1 and push 1 (but not 0) onto the stack which deletes the earlier 1:
S = [2,1]
[index [[O]1]2][3]4]
VORDER || 0 | 3
VISITED | T | F | F | T
Iterate! We pop = = 1 off the stack. Since it’s not visited we mark it as such
and append it to the visiting order. We then iterate over the vertices 0, 3,4
and push 4 (but not 0,3) onto the stack:
S = [2,4]
index JJO[1[]2]3]4]
VORDER || 0 | 3 | 1
VISITED | T | T |F | T

Iterate! We pop = = 4 off the stack. Since it’s not visited we mark it as
such and append it to the visiting order. We then iterate over the vertex 1

F

|

F

but nothing is pushed onto the stack:

S = [2]
| index [JOJ1]2]3]4]
VORDER || 0 | 3 |1 | 4
VISITED (| T |T|F | T

Iterate! We pop & = 2 off the stack. Since it’s not visited we mark it as
such and append it to the visting order. We then iterate over the vertex 0

T

but nothing is pushed onto the stack:
S=1

10

[index [[O]1]2]3]4]
VORDER [[0 [3 [1 [4]2
VISITED [T[T|T|T][T

Then we are done. Observe that the order in which we visited the nodes is
0,3,1,4,2.
7.3 Pseudocode Time Complexity

With this modification each vertex is popped exactly once and so the while
loop iterates V times. The for loop iterates 2F times and we then we have a
total time complexity of ©(V + E) once more.

11

	Introduction:
	Intuition
	Visualization
	Algorithm Implementation
	Recursive Implementation
	Pseudocode
	Pseudocode Time Complexity

	Stack Implementation
	Pseudocode
	Pseudocode Time Complexity

	Stack/Doubly-Linked-List Implementation
	Introduction
	Pseudocode
	Pseudocode Time Complexity

