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1 Introduction

Dijkstra’s Algorithm is essentially an extension of the shortest path algorithm
in which the graph is weighted. In this case instead of looking for a shortest
path we are looking for a path of minimal weight.

What we’ll actually do is better, we’ll find a shortest weight tree which is a tree
that is a subgraph of the graph such that, treating the starting vertex as the
root, explicitly shows us how to get to every other vertex with minimal weight.

2 Algorithm

Starting with a weighted, undirected simple graph and a starting vertex s,
Dijkstra’s Algorithm proceeds as follows. Here the graph has V vertices and
w(x, y) is the weight of the edge from x to y.

(a) Create a set S = {}.
(b) Create a distance array d of length V consisting of all∞ except set d[s] = 0.

(c) Create a predecessor array p of length V consisting of all NULL.

(d) Pick a vertex x with minimal distance which is not already in S. Add it
to S. For all vertices y adjacent to x, if d[x] + w(x, y) < d[y] then assign
d[y] = d[x] + w(x, y) and set p[y] = x.

(e) Repeat step (d) until S contains all vertices, meaning we can go no further.

Note 2.0.1. In step (d) there may be more than one option for x. In such a
case we may pick any of them.
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3 Working Through an Example
Example 3.1. Consider the following graph:
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Suppose we choose 0 to be our starting vertex. We set S and P as instructed.

Iterate! We look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {}. This is of course currently vertex 0
with distance 0. so we look at all vertices connected to vertex 0 and assign
their distances as vertex 0’s distance plus the edge weight. We only do this if
this value is smaller than their current weight but since their current weight
is ∞ then of course we replace it. We also set those vertices’ predecessor to
be 0.
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We put this vertex in S, so S = {0}
Iterate! We look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {0}. This is of course vertex 1 with
distance 10. Then we look at all vertices connected to vertex 1 and assign
their distances as vertex 1’s distance plus the edge weight. We only do this
if this value is smaller than their current weight and if so we also set those
vertices’ predecessor to be 1.
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We put this vertex in S, so S = {0, 1}.
Iterate! We look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {0, 1}. This is of course vertex 3 with
distance 20. Then we look at all vertices connected to vertex 3 and assign
their distances as vertex 3’s distance plus the edge weight. We only do this
if this value is smaller than their current weight and if so we also set those
vertices’ predecessor to be 3. Note that vertex 4 gets its weight reassigned
because it was 110 but from vertex 3 it’s 20 + 30 = 50 < 110.
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We put this vertex in S, so S = {0, 1, 3}.
Iterate! We look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {0, 1, 3}. This is of course vertex 2 with
distance 30. Then we look at all vertices connected to vertex 2 and assign
their distances as vertex 2’s distance plus the edge weight. We only do this
if this value is smaller than their current weight and if so we also set those
vertices’ predecessor to be 2.
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We put this vertex in S, so S = {0, 1, 3, 2}.
Iterate! we look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {0, 1, 3, 2}. This is of course vertex
4 with distance 50 Then we look at all vertices connected to vertex 4 and
assign their distances as vertex 4’s distance plus the edge weight. We only
do this if this value is smaller than their current weight and if so we also set
those vertices’ predecessor to be 4.
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We put this vertex in S, so S = {0, 1, 3, 2, 4}
Iterate! We look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {0, 1, 3, 2, 4}. Both vertices 5 and 7
work so we can pick either. Let’s choose vertex 5 with distance 80. Then we
look at all vertices connected to vertex 5 and assign their distances as vertex
5’s distance plus the edge weight. We only do this if this value is smaller
than their current weight and if so we also set those vertices’ predecessor to
be 5. Here there are no changes.
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We put this vertex in S, so S = {0, 1, 3, 2, 4, 5}.
Iterate! We look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {0, 1, 3, 2, 4, 5}. This is vertex 7 with
distance 80. Then we look at all vertices connected to vertex 7 and assign
their distances as vertex 7’s distance plus the edge weight. We only do this
if this value is smaller than their current weight and if so we also set those
vertices’ predecessor to be 7. Here there are no changes.
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We put this vertex in S, so S = {0, 1, 3, 2, 4, 5, 7}.
Iterate! We look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {0, 1, 3, 2, 4, 5, 7}. This is vertex 6 with
distance 90. Then we look at all vertices connected to vertex 6 and assign
their distances as vertex 6’s distance plus the edge weight. We only do this
if this value is smaller than their current weight and if so we also set those
vertices’ predecessor to be 6. Here there are no changes.
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We put this vertex in S, so S = {0, 1, 3, 2, 4, 5, 7, 6}.
Iterate! We look at the graph and choose the vertex with minimum assigned
distance which is not already in S = {0, 1, 3, 2, 4, 5, 7, 6}. This is vertex 8
with distance 100. Then we look at all vertices connected to vertex 8 and
assign their distances as vertex 8’s distance plus the edge weight. We only
do this if this value is smaller than their current weight and if so we also set
those vertices’ predecessor to be 8. Here there are no changes.
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We put this vertex in S, so S = {0, 1, 3, 2, 4, 5, 7, 6, 8}
Now S contains every vertex and we are done.

Our array of predecessors is P = [NULL, 0, 1, 0, 3, 2, 7, 4, 7] and this tells us
how to construct our tree in the sense that the predecessor of each vertex is
its parent and this tells us the edges. For example P [0] = NULL because
there is no predecessor of 0 as it is the root vertex, P [1] = 0 and so we need
to have the edge (1, 0), and so on.

In other words this array gives us the set of edges:

(1, 0), (2, 1), (3, 0), (4, 3), (5, 2), (6, 7), (7, 4), (8, 7)

In the graph we keep only those edges we get the following. The labels
show the minimum weight path back to vertex 0 and the brackets show the
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predecessors still.
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4 Rudimentary Pseudocode

Here is the pseudocode for a very rudimentary implementation. This code
returns an array pred with the property that pred[v] gives the predecessor of
the vertex v in the minimal weight tree.

\\ PRE: G is a graph with V vertices.

\\ PRE: s is the starting vertex.

def dijkstra(G,start):

dist = [inf ,...,inf] of length V.

pred = [NULL ,..., NULL] of length V.

S = []

dist[start] = 0

while length(S) != V

x = vertex in G-S with smallest distance

for each vertex y connected to x

if dist[x] + (Weight of Edge x,y) < dist[y]:

dist[y] = dist[x] + (Weight of Edge x,y)

pred[y] = x

end

end

append x to S

end

return(pred)

end

5 Rudimentary Pseudocode Time Complexity

The argument for time complexity is similar to but not exactly the same as
that for the Shortest Path Algorithm. Assuming we have stored the graph as
an adjacency list:

• There is Θ(V ) time required inside the function but excluding the while
loop.

• The while loop iterates V times and the body of the while loop, excluding
the for loop, takes Θ(V ) time. This is due to the process of finding the
vertex in G − S with smallest distance. You should consider how this
might be done. This then a total of Θ(V 2).

• Over the course of the entire algorithm the body of the for loop iterates
twice for each edge, taking constant time for each, so that’s Θ(2E) =
Θ(E).

Thus we can say for certain that in the worst-case:

T (V,E) = Θ(V 2 + V + E) = Θ(V 2 + E)

Since for a connected graph we have V < 2E and E ≤ V 2−V this is also O(E2)
and O(V 2).
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6 Elegant Pseudocode

Here is the pseudocode for a more standard implementation. Instead of using
simple lists we will manage the vertices using two structures kept in alignment:

• A min-heap MH such that each node contains a vertex number and the
corresponding distance from s. The distance is the value used for min-
heapedness. This is initialized with root node MH[1] storing vertex s with
distance 0 and all other nodes the other vertices all with distance INF.

• A management structure MS indexed by vertex which contains the cor-
responding distance from s, the vertex’s predecessor, the heap location
of the vertex, and a flag indicating whether the vertex is (still) in the
heap. This is initialized with MS[s] storing distance 0 with heap loca-
tion 0 and predecessor NULL and all other MS[i] storing distance INF with
corresponding heap location and predecessor NULL.

\\ PRE: G is a graph with n vertices.

\\ PRE: s is the starting vertex.

def dijkstra(G,s):

initialize MH
}

(A)
initialize MS

while MH is not empty

Extract root node (u,udist) from MH
}

(B)
Update MS to indicate u no longer in heap

for every edge attached to u

v = vertex at the other end
(C)

(vdist,vinheap,vpred) = MS[v]

if vinheap and udist + weight(u,v) < vdist

update MH,MS with new distance, pred

endif

endfor

endwhile

return(MS)

end
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7 Elegant Pseudocode Time Complexity

It’s tempting to say that since the while loop iterates V times and the for loop
iterates at most E times that there are V iterations of (B) and EV iterations
of (C).

However we can be a bit more careful here. All together the for loop will follow
each edge exactly twice. This is because an edge from ui to uj is followed once
for ui, directly after ui is removed, and once for uj , directly after uj is removed.
It is then never visited again. Thus in total (C) will iterate 2E times. This
update of MH and MS is O(lg V ) for a total of O(2E lg V ).

In addition (B) will iterate V times. Extraction and update of MH and MS is
O(lg V ) for a total of O(V lg V ).

Along with (A), which we presume is O(1), we have a total time complexity of:

O(2E lg V + V lg V + 1) = O((2E + V ) lg V ) = O(E lg V )

Note 7.0.1. Arguably since we’re allocating structures in (A) one might suggest
that they’re both O(V ) since each has V items. This does not change the final
time complexity calculation.
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8 Mathematical Proof that it Works

It may (or may not) make intutive sense that Dijkstra’s Algorithm does what
it is claimed to do, but a proof is fairly straightforward.

The key point to understand is that while, in general, assigning a distance to a
vertex is not final since that distance may be updated later, when a vertex is
added to S the distance assigned to that vertex is in fact final and will not be
updated later. It’s this latter point we need to prove.

By d(x) we denote the distance as assigned to vertex x by the algorithm. By
c(x1, ..., xj) we mean the total cost along the path 〈x1, ..., xj〉.
Note 8.0.1. This can also be rephrased in terms of a loop invariant and proven
using the Loop Invariant Theorem. In that case the loop invariant is the state-
ment about S at each iteration and the proof of the maintenance step is essen-
tially what follows.
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Theorem 8.0.1. We claim that whenever we put some x in S that the minimal
cost path from s to x is the assigned d(x).

Proof. Suppose not and that at some point we have an S and we are about to
add (but have not yet added) some very first x 6∈ S for which d(x) is not equal
to the minimal cost path from s to x.

We know that there must be some some minimal cost path from s to x and
since it starts at s ∈ S and ends at x 6∈ S we write:

〈s = v1, v2, ..., vi, vi+1, ..., vk = x〉

Where vi, vi+1 is the first pair along the path with vi ∈ S and vi+1 6∈ S. Note
that possibly vi+1 = x here.

That path must be cheaper than d(x) because d(x) is not minimal:

c(s = v1, ...vi, vi+1, ..., vk = x) < d(x) (I)

Since vi ∈ S we know two things about it. First, since vi was added earlier, so
d(vi) is minimal:

d(vi) ≤ c(v1, ..., vi) (II)

Second, that when the algorithm processed vi all adjacent nodes had their d-
values set or updated, so:

d(vi+1) ≤ d(vi) + c(vi, vi+1) (III)

From here putting (III) and (II) together:

d(vi+1) ≤ d(vi) + c(vi, vi+1) ≤ c(v1, ..., vi) + c(vi, vi+1) = c(v1, ..., vi+1) (IV)

In addition if x = vi+1 then d(x) = d(vi+1) and if x 6= vi+1 then the algorithm
chose x over vi+1 (when selecting what to put in S next) and so d(x) ≤ d(vi+1).
Either way we have:

d(x) ≤ d(vi+1) (V)

Now putting (V) and (IV) and (I) together:

d(x) ≤ d(vi+1) ≤ c(v1, ..., vi+1) ≤ c(s = v1, ...vi, vi+1, ..., vk = x) < d(x)
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This is a contradiction and we are done.

QED
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9 Thoughts, Problems, Ideas

1. For the graph given in the notes and replicated here, derive the minimal
weight tree starting at vertex 7:
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2. If the algorithm simply needs to find the minimum weight path from s
to a specific vertex t at which point can it stop and why? Modify the
pseudocode accordingly.

3. Dijkstra’s Algorithm produces a mimimal weight tree rooted at a specific
vertex s. Even though this tree is still a tree when we consider some other
vertex s′ 6= s as the root this tree need not be a minimal weight tree rooted
at s′. Show by a four-vertex example that this is the case. Justify your
example.

4. A spanning tree for a graph G is a subgraph of G which contains all vertices
of G and is also a tree. A minimal spanning tree is a spanning tree that
has smallest possible weight. Show by a 3-vertex example that Dijkstra’s
Algorithm does not necessarily produce a minimal spanning tree. Justify
your example.

15



10 Python Test and Output

The following code is applied to the graph above. This follows the model of the
pseudocode and in addition creates and returns a list of the vertices in the order
in which they were visited.

Code:

# Return the minimum value and index in dist but not in S.

def min(G,dist ,S):

n = len(G)

mdist = float(’inf ’)

# Find a minimum value.

for v in range(n):

if v not in S:

if dist[v] < mdist:

mdist = dist[v]

# Find the first index corresponding to that value.

mi = None

for v in range(n):

if (v not in S) and (dist[v] == mdist):

mvertex = v

break

return(mvertex)

def dijkstra(G,u):

n = len(G)

dist = [float(’inf ’)] * n

pred = [None] * n

S = []

dist[u] = 0

print(’S: ’ + str(S))

print(’dist: ’ + str(dist))

while len(S) != n:

print(’’)

x = min(G,dist ,S)

print(’Vertex not in S with minimum distance: ’ + str(x))

S.append(x)

print(’S = ’ + str(S))

for y in range(n):

if G[x][y] != 0:

print(’Vertex: ’ + str(y) + ’: ’,end=’’)

if dist[x] + G[x][y] < dist[y]:

print(’Update from ’+str(dist[y]),end=’’)

print(’ to ’ + str(dist[x]+G[x][y]))
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dist[y] = dist[x] + G[x][y]

pred[y] = x

else:

print(’Do not update from ’+str(dist[y]),end=’’)

print(’ to ’ + str(dist[x]+G[x][y]))

print(’dist = ’ + str(dist))

return(pred)

G = [[ 0, 10, 0, 20, 0, 0, 0, 0, 0],

[ 10, 0, 20, 0,100, 0, 0, 0, 0],

[ 0, 20, 0, 0, 0, 60, 0, 0, 0],

[ 20, 0, 0, 0, 30, 0,120, 0, 0],

[ 0,100, 0, 30, 0, 70,100, 30, 80],

[ 0, 0, 60, 0, 70, 0, 0, 0,100],

[ 0, 0, 0,120,100, 0, 0, 10, 0],

[ 0, 0, 0, 0, 30, 0, 10, 0, 20],

[ 0, 0, 0, 0, 80,100, 0, 20, 0]]

u = 0

pred = dijkstra(G,u)

print(pred)
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Output:

S: []

dist: [0, inf , inf , inf , inf , inf , inf , inf , inf]

Vertex not in S with minimum distance: 0

S = [0]

Vertex: 1: Update from inf to 10

Vertex: 3: Update from inf to 20

dist = [0, 10, inf , 20, inf , inf , inf , inf , inf]

Vertex not in S with minimum distance: 1

S = [0, 1]

Vertex: 0: Do not update from 0 to 20

Vertex: 2: Update from inf to 30

Vertex: 4: Update from inf to 110

dist = [0, 10, 30, 20, 110, inf , inf , inf , inf]

Vertex not in S with minimum distance: 3

S = [0, 1, 3]

Vertex: 0: Do not update from 0 to 40

Vertex: 4: Update from 110 to 50

Vertex: 6: Update from inf to 140

dist = [0, 10, 30, 20, 50, inf , 140, inf , inf]

Vertex not in S with minimum distance: 2

S = [0, 1, 3, 2]

Vertex: 1: Do not update from 10 to 50

Vertex: 5: Update from inf to 90

dist = [0, 10, 30, 20, 50, 90, 140, inf , inf]

Vertex not in S with minimum distance: 4

S = [0, 1, 3, 2, 4]

Vertex: 1: Do not update from 10 to 150

Vertex: 3: Do not update from 20 to 80

Vertex: 5: Do not update from 90 to 120

Vertex: 6: Do not update from 140 to 150

Vertex: 7: Update from inf to 80

Vertex: 8: Update from inf to 130

dist = [0, 10, 30, 20, 50, 90, 140, 80, 130]

Vertex not in S with minimum distance: 7

S = [0, 1, 3, 2, 4, 7]

Vertex: 4: Do not update from 50 to 110

Vertex: 6: Update from 140 to 90

Vertex: 8: Update from 130 to 100
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dist = [0, 10, 30, 20, 50, 90, 90, 80, 100]

Vertex not in S with minimum distance: 5

S = [0, 1, 3, 2, 4, 7, 5]

Vertex: 2: Do not update from 30 to 150

Vertex: 4: Do not update from 50 to 160

Vertex: 8: Do not update from 100 to 190

dist = [0, 10, 30, 20, 50, 90, 90, 80, 100]

Vertex not in S with minimum distance: 6

S = [0, 1, 3, 2, 4, 7, 5, 6]

Vertex: 3: Do not update from 20 to 210

Vertex: 4: Do not update from 50 to 190

Vertex: 7: Do not update from 80 to 100

dist = [0, 10, 30, 20, 50, 90, 90, 80, 100]

Vertex not in S with minimum distance: 8

S = [0, 1, 3, 2, 4, 7, 5, 6, 8]

Vertex: 4: Do not update from 50 to 180

Vertex: 5: Do not update from 90 to 200

Vertex: 7: Do not update from 80 to 120

dist = [0, 10, 30, 20, 50, 90, 90, 80, 100]

[None , 0, 1, 0, 3, 2, 7, 4, 7]
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