CMSC 351: Floyd’s Algorithm

Justin Wyss-Gallifent

November 10, 2023

[ TIntroductionl. . . . . . .. .. ...
12 A Dynamic Example| . . . . . . ..o o000 o000
13 Path Storage and Reconstruction| . . . . . . ... ... ... ...
4 Algorithm| . . . . . ... ... ...
15 Time Complexity| . . . . . . . . . . . .




1 Introduction

Suppose we have a directed, weighted, simple and connected graph in which
both positive and negative (and zero) weights are allowed and we wish to find
a shortest path between any two vertices.

The word “path” in this context is a bit different from our definition in that
it is allowing repeated edges and vertices. Consequently because we permitting
negative weights we could possibly get paths with arbitrarily low (negative)
distances if the graph had a cycle with total negative weight since we could just
follow the cycle arbitrarily many times.

Since this adds a layer of confusion to the situation we will insist that the graph
has no cycles with negative total weight. By doing this the term “shortest path”
aligns with our use of the word “path”.

2 A Dynamic Example

Consider the following directed, weighted, simple and connected graph:

1
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Here is the adjacency matrix for that graph which we’ll denote by d (rather
than the typical A). One way to think about the adjacency matrix is that d[, j]
equals the length of a shortest path from ¢ to j not permitting any intermediate
vertices.

0 20 oo
d= |oco 0 10
40 80 O

Suppose now for each i, j we also allow 1 to be an intermediate vertex. Observe
that the length of a shortest path from 3 to 2 shrinks because we may use 1 as
an intermediate vertex. More formally we observe that:

d[3,1] + d[1,2] < previous d[3, 2]

Note that none of the other shortest paths change because 1 doesn’t help any-



thing else. Let’s update the matrix accordingly:
d[3,2) = d[3,1] + d[1, 2]

Now for all entries d[i, j] equals the length of a shortest path from ¢ to j per-
mitting intermediate vertex 1. We call this - Pass By 1:
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Suppose now for each i, j we also allow 1,2 to be intermediate vertices. Observe
that the length of a shortest path from 1 to 3 shrinks because we may use 2 as
an intermediate vertex. More formally we observe that:

d[1,2] +d[2, 3] < previous d[1, 3]

Note that none of the other shortest paths change because 2 doesn’t help any-
thing else. Let’s update the matrix accordingly:

d[1,3] = d[1,2] + d[2, 3]

Now for all entries d[i, j] equals the length of a shortest path from ¢ to j per-
mitting intermediate vertices 1,2. We call this - Pass By (1 and) 2:
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Suppose now for each i, j we also allow 1,2,3 to be intermediate vertices. Ob-
serve that the length of a shortest path from 2 to 1 shrinks because we may use
3 as an intermediate vertex. More formally we observe that:

d[2,3] + d[3, 1] < previous d[2, 1]

Note that none of the other shortest paths change because 3 doesn’t help any-
thing else. Let’s update the matrix accordingly:

d2,1] = d[2,3] + d[3,1]

Now for all entries d[i, j] equals the length of a shortest path from i to j per-
mitting intermediate vertices 1,2,3. We call this - Pass By (1 and 2 and) 3:
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But now since we’re allowing all vertices as intermediate vertices what we’ve
actually obtained is a matrix of shortest paths between all pairs of vertices.



3 Path Storage and Reconstruction

Before we turn this into an algorithm note that the matrix doesn’t actually give
us the paths, just the lengths of those paths. To obtain the paths let’s go back
to the start and take another matrix along for the ride.

We define the matrix p which we initialize by setting p[u,v] = u for each edge
u to v and by setting p[v,v] = v for each vertex v. All other entries are NULL.
Observe that in general p[u,v] is the predecessor of v in a shortest path from u
to v not permitting any intermediate vertices:

1 1 NULL
p=|NULL 2 2
33 3

During our first update of d above we saw that it was quicker to get from 3 to
2 via 1. The value of p[3,2] needs to be the precedessor of 2 on the path from
3 to 2 but since we go via 1 we should reassign this to be p[1, 2]:

p[S, 2] = p[17 2]

Now:

1 1 NULL
p= |NULL 2 2
31 3

Likewise during our second update of d we update:

p[l, 3] = p[273]

Now:
1 1 2
p=|NULL 2 2
3 1 3

And during our third upate of d we also update:

p[2,1] = d[3,1]
Now:
1 1 2
p=13 2 2
3 1 3

Now that we are done let’s look at how to reconstruct a shortest path from p.
Consider a shortest path from 3 to 2. Start by initializing path = [2]. Then



observe that p[3,2] = 1 which means 1 is the predecessor of 2 along a shortest
path from 3 to 2 and so we prepend 1 and now path = [1,2]. Then observe that
p[3,1] = 3 which means 3 is the predecessor of 1 along a shortest path from 3
to 1 and so we prepend 2 and now path = [3,1,2].

4 Algorithm

Each of these updates only uses data from the previous d and so it forms an
algorithm nicely.

d = adjacency matrix for a graph
P = n x n array all null
for each edge (u,v):
plu,v] = u
end for
for each vertex v:
plv,vl = v
end for
for k = 1 to n:
for i = 1 to n:
for j = 1 to n:

if dli,k] + dlk,jl] < d[i,j]:
dli,jl] = dali,k] + dlk,j]
pli,jl = plk,j]

end if

end for
end for
end for

The first two for loops simply initialize p. Each iteration of k adds another
vertex to the list of permissible intermediate vertices and updates the matrices
d and p correspondingly.

5 Time Complexity

Starting with an adjacency matrix the first for loop is ©(V?2) (scanning all
entries) and the second for loop is ©(V). The remaining code is ©(V3) and so
overall we have O(V3).

While this may seem slow this can actually be faster than Dijkstra, for example,
if the graph has many many edges.
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