
CMSC 351: Graphs

Justin Wyss-Gallifent

April 7, 2024

1 Introduction . 2
2 Summary of Definitions . 2
3 Definitions . 3
4 Counting Notation . 4
5 Walks, Trails, Paths, Cycles, Trees 4
6 Adjacency Matrices . 5
7 Adjacency Lists . 6
8 Considerations . 7

8.1 Storage . 7
8.2 Access . 7
8.3 Math . 7

9 The Degree and Other Matrices for a Graph 8
10 Thoughts, Problems, Ideas . 9

1

1 Introduction

Graphs are essentially diagrams (or data, at an abstract level) which represent
networks and in general connectivity between objects.

For example the following diagram could represent the connectivity between
four computers:

0

1

2 3

Here we see that computers 0,1,2 are connected to one another and computer 3
is only connected to computer 2.

2 Summary of Definitions

This is just here to help organize. We define:

1. Graph, edge, vertex (node).

2. Adjacent edges.

3. Degree.

4. Loop.

5. Multiple edge(s).

6. Simple.

7. Weighted and unweighted.

8. Directed and undirected.

9. Walk, trail, path.

10. Connected graph.

11. Cycle.

12. Tree.

13. Adjacency matrix for an unweighted undirected simple graph.

14. Adjacency matrix for a weighted directed simple graph.

15. Adjacency list for an unweighted undirected simple graph.

16. Degree matrix for an unweighted undirected simple graph.

17. Laplacian matrix for an unweighted undirected simple graph.

18. These final five definitions are not comprehensive nor completely uniform.

2

3 Definitions

We have the following formal definitions:

Definition 3.0.1. A graph consists of vertices or nodes connected by edges.

Example 3.1. The diagram above is a graph consisting of four vertices and
four edges.

Definition 3.0.2. Two vertices are adjacent if they are connected by an edge.

Definition 3.0.3. The degree of a vertex is the number of edge connections
incident at that vertex.

Example 3.2. In the above graph vertices 0,1 have degree 2, vertex 2 has
degree 3 and vertex 3 has degree 1.

Note 3.0.1. If the graph has loops and multiple edges (see below) then these
must be accounted for.

Definition 3.0.4. A loop is an edge which joins a vertex to itself.

Definition 3.0.5. Two vertices may be joined by more than one edge, in which
case we say there are multiple edges between the vertices.

Example 3.3. This graph has a loop (vertex 0 to itself) and multiple edges
(vertex 2 to vertex 3):

0

1

2 3

Definition 3.0.6. A graph is simple if it has no loops and no multiple edges.

Example 3.4. The first graph is simple.

Definition 3.0.7. A graph is weighted if each edge has a numerical weight
associated to it.

Most, if not all, of the graphs we will look at will be weighted simple graphs
where each weight yields some sort of cost of connection. A simple example of
a road network between cities in which each weight is the distance.

Example 3.5. Here is a weighted simple graph:

3

0

1

2 33

1

5

7

Definition 3.0.8. A graph is directed if the edges have directions, usually
indicated by arrows.

Working with directed graphs is much more challenging than working with undi-
rected graphs.

Example 3.6. Here is a weighted simple directed graph:

0

1

2 33

1

5

7

4 Counting Notation

It’s common to use V for the number of vertices and E for the number of edges.
Sometimes V and E are also used for the sets of vertices and edges but I’ll try
to avoid that here.

5 Walks, Trails, Paths, Cycles, Trees

Definition 5.0.1. A walk of length k from vertex u to vertex v is a sequence
of k edges which start at vertex u and end at vertex v.

Intuitively a walk is simply a way of getting from vertex u to vertex v. It’s
permissible to repeat edges and vertices.

Definition 5.0.2. A trail is a walk in which all edges are distinct. Note that
vertices may be repeated.

Note 5.0.1. Walks and trails of length 0 are permitted. Specifically there is a
walk/trail of length 0 from each vertex to itself.

Definition 5.0.3. A path is a walk in which all vertices are distinct. Note that
if vertices are distinct then so are edges.

Note 5.0.2. We can’t have a path of length 0 because we can’t repeat vertices.

We will primarily focus on paths because these make the most sense when
we’re discussing optimization. For example if you wanted the shortest distance
between two cities you would certainly not repeat any of the intermediate cities

4

or roads!

Definition 5.0.4. A cycle is a trail in which all vertices are distinct except we
insist that the starting and ending vertices are the same.

Note 5.0.3. In a graph in which loops are allowed a loop is a cycle consisting
of the point and the edge.

Definition 5.0.5. A graph is connected if for any two vertices there is at least
one path joining those vertices.

Definition 5.0.6. Formally a tree is an undirected simple connected graph
with the property that every two vertices are connected by exatly one path.

Example 5.1. In our original graph:

0

1

2 3

Here are some observations:

• Formally we have V S = {0, 1, 2, 3} and ES = {(0, 1), (0, 2), (1, 2), (2, 3)}.
• The sequence 〈3, 2, 0, 2, 1〉 is a walk of length 4 from vertex 3 to vertex

1. It is not a trail since the edge (0, 2) is repeated and so automatically
it is not a path either.

• The sequence 〈2, 0, 1, 2, 3〉 is a walk of length 4 from vertex 2 to vertex
3. It is also a trail since no edges are repeated. It is not a path though
since vertex 2 is reapeated.

• The sequence 〈3, 2, 1, 0〉 is a walk of length 3 from vertex 3 to vertex
0. It is also a trail and a path.

• This graph is connected.

6 Adjacency Matrices

A graph can be represented by an adjacency matrix. For a graph G with V
vertices the adjacency matrix A will be V × V as explained below for various
types of graphs.

Note 6.0.1. When we work with matrices in mathematics it’s traditional to
index from 1 upwards but in computer science it’s traditional to index from 0
upwards. I’m going to stick with the computer science approach here so when
we discuss an m×n matrix we really mean an m×n array A indexed as AM [i][j]
with 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. This may seem a little weird from a
mathematics perspective but it makes the coding significantly easier.

5

1. If the graph is simple, unweighted and undirected then:

amij =

{
1 if vertices i and j are connected by an edge

0 if not

Example 6.1. The graph from the beginning:

0

1

2 3

has adjacency matrix:

AM =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


2. If the graph is simple and weighted, but not directed, then:

amij =

{
w if vertices i and j are connected by an edge with weight w

0 if not

Example 6.2. The following graph:

0

1

2 33

1

5

7

has adjacency matrix:

AM =


0 3 5 0
3 0 1 0
5 1 0 7
0 0 7 0


Note 6.0.2. This is not comprehensive.

7 Adjacency Lists

While using the adjacency matrix AM is convenient it is not always the best
option. Another option is to store an adjacency list.

6

Definition 7.0.1. The adjacency list of a graph G is the list AL such that
AL[i] contains a list of vertices adjacent to i.

Note 7.0.1. An adjacency list is a list of lists.

Example 7.1. The following graph:

0

1

2 3

has adjacency list:

AL = [[1, 2], [0, 2], [0, 1, 3], [2]]

Note 7.0.2. We can generalize the notion of an adjacency list to a weighted
graph by storing (j, w) ∈ AL[i] if there is an edge from i to j with weight w.

8 Considerations

8.1 Storage

Observe the following:

• The adjacency matrix AM will always require V 2 values.

• The adjacency list AL will vary in accordance with the number of edges.

8.2 Access

Observe the following. If we are focusing on a particular vertex x:

• The adjency matrix AM will require a scan of V iterations (either row x
or column x) to figure out which other vertices x is connected to.

• The adjacency list AL allows us to immediately access a list of the other
vertices x is connected to.

8.3 Math

Observe the following. If we are focusing on a particular vertex x:

• The adjacency matrix AM is a convenient structure which we can work
with mathematically.

• The adjacency list isn’t.

7

9 The Degree and Other Matrices for a Graph

Definition 9.0.1. For a graph G with n vertices the degree matrix for G is the
V × V diagonal matrix D such that dii equals the degree of vertex i.

There are many other matrices associated to a graph. One of the most useful
is the Laplacian Matrix L = D − AM which is used to study the connectivity
of a graph.

8

10 Thoughts, Problems, Ideas

1. Provide the adjacency matrix and adjacency list for the graph shown here:

0

1

2

3

4

5

6

2. Suppose a graph G has adjacency list:

AL = [[7], [2, 4], [1, 4], [6, 7], [1, 2, 6, 7], [], [3, 4], [0, 3, 5]]

Draw a picture of G and write down its adjacency matrix.

3. For a graph G with n vertices write the pseudocode for an algorithm which
takes the adjacency matrix AM for G and produces the corresponding
adjacency list AL. What is the Θ(n) time complexity of this? Assume it
takes Θ(1) time to allocate any fixed size list and array full of zeros.

4. For a graph G with n vertices write the pseudocode for an algorithm which
will takes the adjacency list AL for G and produce the corresponding
adjacency matrix AM . What is the Θ time complexity of this? Assume
it takes Θ(1) time to allocate any fixed size list and array full of zeros.

5. Given the adjacency matrix AM for a graph with n vertices and a list V of
k vertices, write the pseudocode for an algorithm which would determine
whether V specifies a walk, returning either TRUE or FALSE. What is the
best- and worst-case Θ time complexity for this?

6. Given the adjacency matrix AM for a graph with n vertices and a list V of
k vertices, write the pseudocode for an algorithm which would determine
whether V specifies a trail, returning either TRUE or FALSE. What is the
best- and worst-case Θ time complexity for this?

7. Given the adjacency matrix AM for a graph with n vertices and a list V of
k vertices, write the pseudocode for an algorithm which would determine
whether V specifies a path, returning either TRUE or FALSE. What is the
best- and worst-case Θ time complexity for this?

8. Given the adjacency list AL for a graph with n vertices and a list V of
k vertices, write the pseudocode for an algorithm which would determine
whether V specifies a walk, returning either TRUE or FALSE. What is the
best- and worst-case Θ time complexity for this?

9. Given the adjacency list AL for a graph with n vertices and a list V of
k vertices, write the pseudocode for an algorithm which would determine
whether V specifies a trail, returning either TRUE or FALSE. What is the
best- and worst-case Θ time complexity for this?

10. Given the adjacency list AL for a graph with n vertices and a list V of

9

k vertices, write the pseudocode for an algorithm which would determine
whether V specifies a path, returning either TRUE or FALSE. What is the
best- and worst-case Θ time complexity for this?

10

	Introduction
	Summary of Definitions
	Definitions
	Counting Notation
	Walks, Trails, Paths, Cycles, Trees
	Adjacency Matrices
	Adjacency Lists
	Considerations
	Storage
	Access
	Math

	The Degree and Other Matrices for a Graph
	Thoughts, Problems, Ideas

