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1 Complete Binary Trees

1.1 Definition

Definition 1.1.1. A complete binary tree is a binary tree in which all levels
are completely filled, except possibly for the bottom level, and the bottom level
has all entries as far left as possible.

Typically complete binary trees are 1-indexed where the indices are assigned
left-to-right from the top down. In this way a complete binary tree can be
represented by a simple list.

Example 1.1. Here is an example of a complete binary tree.

This may be represented by the 1-indexed list:

A=1[6,13,3,5,1,7,2,8,9,6,15,17]

1.2 Index Notes

Observations about indices that we’ll find useful:

e If a node has index 4 then its left and right children (if it has them) have
indices 2¢ and 2i + 1 respectively.

Example 1.2. In the above example the node with index 5 has chil-
dren with indices 10 and 11.

e If a node has index 4 then its parent has index [i/2].

Example 1.3. In the above example the node with index 7 has parent
with index |7/2] = |3.5] = 3.

e As a special case of the above, if there are n nodes total then the largest
node with children is the node with index |n/2].

Example 1.4. In the above example there are n = 12 nodes and the
largest one with children is the node with index |12/2] = 6.

e If a node with index 7 has children than all nodes with smaller indices also
have children.



Example 1.5. In the above example the node with index ¢ = 4 has
children and then so do the nodes within indices 1, 2, and 3.

e Combining the previous two items tell us that if there are n nodes to-
tal then the nodes with indices 1, 2, ... , |n/2] are the ones that have
children.

Example 1.6. In the above example the nodes with indices 1, 2, ... |
6 are the ones that have children.

1.3 Level Notes

o The leftmost node at level k& (with level k£ = 0 being the level of the root)
is the node with index 2*.

Example 1.7. In the above example the leftmost node at level 3 is
the node with index 2371 = 4.

e A node with index ¢ is located in level |lgi].

Example 1.8. In the above example the node with index 6 is located
in level |1g(6)] = [2.58] = 2.

e As a special case of the above, if there are n nodes total then the maximum
level (the leaf level) equals |lgn|.

Example 1.9. In the above example there are n = 12 nodes and
|lg(12)| = |3.58] = 5 levels.

e The number of levels between a node with index ¢ and the leaf layer,
inclusive, is then [lgn| — [lgi| + 1.

Example 1.10. In the above example the number of levels between
the node with index 3 and the leaf level, inclusive, is |lg12] — |lg3] +
1=3.

2 Max Heaps

2.1 Definition

Definition 2.1.1. A maz heap (we'll omit the word binary since all our trees
will be binary) is a complete binary tree in which each node’s key is greater than
or equal to that node’s children’s key if that node has children. In other words
keys non-strictly decrease (equality is acceptable) as we go down the branches.

Example 2.1. The example above is not a max heap. The nodes marked
in red below violate the requirement because they have keys which are less
than at least one of their children’s keys:



3 Converting to a Max Heap

Given a complete binary tree, it’s possible to rearrange the nodes so as to obtain
a max heap. To do this we’ll need two processes.

3.1 Max Heapify - Fixing a Node

The maxheapify function atrociously named because its functionality isn’t re-
flected well in its name. A better name would be swapkeydown.

We call the maxheapify function on a node whose children are each already
roots of their own max heaps. It swaps the key at index ¢ down the tree as far
as necessary (if at all) to ensure that the subtree rooted at index 7 is also a max
heap.

It does this by asking “Is my key smaller than either of my children’s keys?” If
not, then we’re done. If so, then the key is swapped with the largest child key
and then maxheapify calls itself again on that child.

Note 3.1.1. We really want to emphasize that it is maxiheapify which calls
itself again, recursively. We do not need to make these recursive call manually;
We only manually make the first call!

Example 3.1. For example consider the red node (node with index 2) in
the following tree. Note that the subtrees rooted at its children are max



heaps:

We can float this problematic key down by repeatedly following the branch
to the largest key. Here is the process.

We call maxheapify(4,2).

We observe that the key with index 2 is smaller than the key at index 4 and
so we interchange the keys with indices 2 and 4:

Our previous call to maxheapify then recursively calls maxheapify(A,4).

We observe that the key with index 4 is smaller than the key at index 9 and
so we interchange the keys with indices 4 and 9:

Note 3.1.2. This process stops either when the key is larger than the keys of
both its children or we reach the bottom of the tree.

Observe that because the smaller key moves down along a path which results
in larger keys floating up, and because we never float a key up above a higher
key, not only do the subtrees rooted at the child nodes remain max heaps but
the subtree rooted at the node with index ¢ becomes a max heap.

What is the time complexity of this? If 4 is the index of the node we're fixing
then this node is in level |1gi].

In the best case we compare with the children and there’s no issue, so this is
o(1).

In the worst case we need to check all the way to the bottom level which is



|n/2| and so this is |lgn| — |1gi] + 1 levels. In order to get this to depend just
on n we note:

llgn] —lgi] +1<1+1gn

Thus in the worst case this is O(Ign).

3.2 Convert to Max Heap - Fixing a Tree

Given a complete binary tree we can convert it to a max heap by running
maxheapify on all the nodes that have children. From our index arguments
before we know this is 1, 2, ... , [n/2]|. We go through these in reverse order so
that when we fix a node we are assured that the subtree rooted at that node is
already fixed.

The process above is performed by the converttomaxheap function. Thankfully
the name of this function is exactly what it does!

Example 3.2. Here is the process as applied to our original tree:

Here we have maxindex(A)=12 and so floor (maxindex(A)/2)==6 and so
we start with the node with index 6 (the last node with children). Running
maxheapify(A,6) interchanges keys at indices along the chain 6 <> 12 only:

Running maxheapify(A,5) interchanges keys at indices along the chain 5 <>
11 only:




Running maxheapify(A,4) interchanges keys at indices along the chain 4 <
9 only:

Running maxheapify(A,3) interchanges keys at indices along the chain 3 <
6 <> 12 only:

Running maxheapify(A,2) interchanges keys at indices along the chain 2 <
5 only:

Running maxheapify (A, 1) interchanges keys at indices along the chain 1 <
3 <> 6 only:

We can see that the result is now a max heap. The formal proof of this follows
from the fact that running maxheapify on any particular node preserves the
max-heap property of the two child subtrees and induces the max-heap property
on the full subtree.

What is the time complexity of this? Consider we’re running the process on
|n/2] nodes.

In the best case we are running a ©(1) process |n/2] times. Since we know that
n/2—1<|n/2] <n/2 we know this is O(n).



In the worst case we are running a O(lgn) process |n/2] times. Since we know
that |n/2] < n/2 we know this is O(nlgn).

Note 3.2.1. We should note here that while it’s obvious that converttomaxheap
is worst-case O(nlgn) it is actually the case that it’s worse-case ©(n). The proof
of this requires a much more detailed analysis of the number of swaps actually
occurring during the many calls to maxheapify.

4 Heapsort

4.1 Algorithm

A max binary heap is structured such that extracting the keys in a sorted
manner is very easy. There are several ways to do this, all are based on the
observation that the largest key is at the root node so that key needs to be
last in our sorted list. What we’ll do is exchange it with the key in the final
node in the tree and then ignore it from here on out, cutting it off from the tree
structure.

Now then, the children of the new root node are still max heaps but the new
root node (index 1) will almost certainly violate the max heap property so we fix
this by running maxheapify again on the node with index 1 to fix the remaining
tree back to a max heap.

We then repeat the process on the new tree and keep repeating until we’re done.
Example 4.1. Here is the process on our heap from earlier:

We start with:

We interchange the keys at the nodes with indices 1 and 12 and cut the node
with index 12 off from the tree:

We then run maxheapify but only on the subtree:




We interchange the keys at the nodes with indices 1 and 11 and cut the node
with index 11 off from the tree:

We interchange the keys at the nodes with indices 1 and 10 and cut the node
with index 10 off from the tree:

We interchange the keys at the nodes with indices 1 and 9 and cut the node
with index 9 off from the tree:



We interchange the keys at the nodes with indices 1 and 8 and cut node
with index 8 off from the tree:

.@@@@

We then run maxheapify but only on the subtree:

.@@@@

We interchange the keys at the nodes with indices 1 and 7 and cut the node
with index 7 off from the tree:

PO
FORNO)
.@@@@

We then run maxheapify but only on the subtree:
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We interchange the keys at the nodes with indices 1 and 6 and cut node
with index 6 off from the tree:

11

©O®®

We interchange the keys at the nodes with indices 1 and 5 and cut the node
with index 5 off from the tree:

& O, O ©
OXOXOXOKE,

We then run maxheapify but only on the subtree:

L O, O ©
oJoloolo

We interchange the keys at the nodes with indices 1 and 4 and cut the node
with index 4 off from the tree:
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1

NG

O, O, O @
oJolololo

We then run maxheapify but only on the subtree:

1

O, 0, O @
oJolololo

We interchange the keys at the nodes with indices 1 and 3 and cut the node
with index 3 off from the tree:
1

G, L, o O
OJOIOIOIO)

We then run maxheapify but only on the subtree:

&, O, © O
® © @) ) )

We interchange the keys at the nodes with indices 1 and 2 and cut the node
with index 2 off from the tree:

1

, O

. @, . @,
O, &, O O
OXOOXOKE),

At this point we're done and we simply extract the keys by the indices of
the nodes:

1,2,3,5,6,6,7,8,9,13,15,17
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4.2 Heapsort Worst-Case Time Complexity

Consider that in the worst case we go through the following process:

(a) We converttomaxheap. We've seen that this is worst-case O(nlgn) or
arguably O(n).

(b) Fori=mn,n—1,...,2 we swap node ¢ with node 1 (this is ©(1)), we cut node
i off the tree (this is ©(1)), then we run maxheapify on node 1. Running
maxheapify is worse-case O(lgn) but this is for a tree with n nodes. At
this point our tree has i — 1 nodes so it’s O(lg(i — 1)).

The total time required is then as follows, assuming converttomaxheap is
O(nlgn):

O(nlgn) + Z [©(1) +©(1) + O(lg(i — 1))] < O(nlgn) + Y _ O(lg(i — 1))

=2 =2

< O(nlgn)+ Z O(lgn)

=2

< O(nlgn)+(n—1)0O(Ign)

Thus the time complexity is O(nlgn).

If we take converttomaxheap as worst-case O(n) this does not change the result
for heapsort.
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4.3 Heapsort Best-Case Time Complexity
A few notes related to best-case time complexity:

1. If we start with a heap of distinct elements which is already a max heap
then converttomaxheap will be ©(n) (scan but no swaps). However when
we start the swap-cut-maxheapify process we will be swapping smaller
nodes with the root node and then maxheapify on the root node will be
O(lg(i — 1)) again each time for a total of:

O(n) + Z [O(1) + ©(1) + O(lg(i — 1))] = O(nlgn)

2. If we start with a heap of identical elements then converttomaxheap
will be ©(n) (scan but no swaps). In addition the swap-cut-maxheapify
process will be swapping identical nodes with the root note and then
maxheapify on the root node will be ©(1) each time for a total of:

O(n) + > [0(1) +©(1) + 6(1)] = O(n)
=2

4.4 Heapsort Auxiliary Space

HeapSort uses O(1) auxiliary space.

4.5 Heapsort Stability

HeapSort is unstable.

4.6 Heapsort In-Place

HeapSort is in-place.

4.7 Heapsort Usage Note

HeapSort itself is rarely used as a general sorting algorithm because something
like QuickSort is better. However max heaps are used frequently for such things
as priority queues and scheduling. The reason for this is that the process of
insertion and deletion is ©(Ign) on a max heap versus O(n) on a list and so
max heaps are useful whenever these processes are critical.
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5 Pseudocode for Everything

Here is the pseudocode for the various functions.

5.1 Pseudocode for Maxheapify

Here it is assumed that A is a 1-indexed list representing a heap and n is the
length of A, meaning the number of nodes/keys in the tree. The conditionals
leftnode <= n and rightnode <= n simply check for the existence of children
of node i before checking the keys residing there.

Here is the pseudocode:

// Maxheapify node i on the tree A with n nodes.
function maxheapify(A,i,n)

leftnode = 2%*i

rightnode = 2*i+1

largestnode = i

if leftnode <= n and A[leftnode] > A[largestnode]
largestnode = leftnode

end

if rightnode <= n and A[rightnode] > A[largestnode]
largestnode = rightnode

end

if largestnode != 1
swap (A[i],A[largestnodel])
maxheapify (A,largestnode ,n)

end

end

5.2 Pseudocode for Converttomaxheap

Here is the pseudocode.

// Run maxheapify on a tree represented
// by the 1l-indexed list A with n nodes.
function converttomaxheap(A,n)
for i = floor(n/2) down to 1
maxheapify (A,i,n)
end
end
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5.3 Pseudocode for Heapsort

Here is the pseudocode:

function heapsort (A,n)
converttomaxheap (A,n)
for i = n down to 2
swap (A[1] ,A[i])
maxheapify(A,1,i-1)
end
end

6 Thoughts, Problems, Ideas

1. Consider the following complete binary tree.

(a) Which nodes violate the max heap property?

(b) Show the results of applying converttomaxheap. You do not need
to show each step of each maxheapify but show the tree after each
iteration of maxheapify executes.

2. Comparison of running times:

(a) If A = {1,2,3,4,5,6,7} is treated as a complete binary tree. If
maxheapify takes 1 second to interchange the keys at two nodes how
long will it take to run heapsort? Assume everything else takes zero
time.

(b) If A={7,6,5,4,3,2,1} is treated as an array and if it takes 1 second
to swap two entries how long will standard BubbleSort take to sort
the array? Assume everything else takes zero time.

3. Prove that | |z/2] /2| = |x/4].
4. The standard way to add an element to a max heap is to add it at the end
(the n + 1 position) and then run maxheapify on all the required nodes.

As a function of n, which nodes is this? What is the time complexity of
this process?

16



5.

10.
11.

12.

Suppose node i is removed from a max heap. We can’t just remove it
because we will no longer have a tree. Instead the standard approach is
to swap it with the ending node, delete the ending node, and then run
maxheapify to clean up node i. On which nodes will this be necessary
and under which conditions? What is the time complexity of this process?

Qualitatively speaking why might InsertSort be faster than HeapSort for
smaller lists?

Consider the following complete binary tree:

Suppose you forget to converttomaxheap in your heapsort function.
What will the result be? Would you consider the result sorted, unsorted,
or something in between?

Given an array A indexed at 1, describe a process by which we could
determine whether or not the array represents a max heap. Write the
pseudocode for an algorithm which does this. What is the time complexity
of this process?

Describe how you could find the k*® largest element in a max heap. Write
the pseudocode for an algorithm which does this. What is the time com-
plexity of this process?

Modify the various algorithms for the min-heap case.

Modify the various algorithms assuming the heap is indexed starting at 0
rather than 1.

Provide a formal mathematical proof of the following:

Suppose T is a complete binary tree with the property that the subtrees of
the root node are themselves max heaps. Prove that running maxheapify
on the root node results in a max heap overall.
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7 Python Test

Code:

# In order to work with the Python array as tree nodes starting at 1,
# We create a list A[O,...,n] and ignore the Oth entry.
import random
import math
A =1
for i in range (0,10):
A.append(random.randint (0,100))
heapsize = len(A)-1;
nodecount = len(A)-1
def maxheapify(i):
leftnode = 2%i
rightnode = 2xi+1

largestnode = 1
if leftnode <= heapsize and A[leftnode] > A[largestnode]:
largestnode = leftnode

if rightnode <= heapsize and A[rightnode] > A[largestnodel]:
largestnode = rightnode
if largestnode != 1i:
temp = A[i]
Ali] Allargestnode]
A[largestnode] = temp
maxheapify (largestnode)
def converttomaxheap():
for i in range(math.floor (heapsize/2),0,-1):
maxheapify (i)
def heapsort ():
global heapsize
converttomaxheap ()
print (’After converttomaxheap:’)
print (A[1:1)
for i in range(nodecount ,1,-1):
temp = A[1]
A[1] Ali]
A[i] = temp
print (’After switch:’)
print (A[1:1)
heapsize = heapsize - 1
maxheapify (1)
print (’After maxheapify:’)
print (A[1:1)
print (A[1:1)
heapsort ()
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print (A[1:1)
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Output:

[74, 60, 82, 5, 8, 7, 90,
After converttomaxheap:
[90, 60, 82, 50, 8, 7, 74,
After switch:

[, 60, 82, 50, 8, 7, 74,
After maxheapify:

[82, 60, 74, 50, 8, 7, 5,
After switch:

[31, 60, 74, 50, 8, 7, 5,
After maxheapify:

[74, 60, 31, 50, 8, 7, b,
After switch:

[5, 60, 31, 50, 8, 7, 74,
After maxheapify:

[60, 50, 31, 5, 8, 7, 74,
After switch:

(7, 50, 31, 5, 8, 60, 74,
After maxheapify:

[s0, 8, 31, 5, 7, 60, 74,
After switch:

(7, 8, 31, 5, 50, 60, 74,
After maxheapify:

[31, 8, 7, 5, 50, 60, 74,
After switch:

(5, 8, 7, 31, 50, 60, 74,
After maxheapify:

(8, 6, 7, 31, 50, 60, 74,
After switch:

[, 5, 8, 31, 50, 60, 74,
After maxheapify:

[, 5, 8, 31, 50, 60, 74,
After switch:

(6, 7, 8, 31, 50, 60, 74,
After maxheapify:

(5, 7, 8, 31, 50, 60, 74,
(5, 7, 8, 31, 50, 60, 74,

31,

31,

31,

31,

82,

82,

82,

82,

82,

82,

82,

82,

82,

82,

82,

82,

82,

82,
82,

50]

5]

90]

901

901

901

901

90]

901

901

901

90]

901

901

901

90]

901

901
90]
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