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1 What it Does

Sorts a list of integers or real numbers.

2 How it Works:

We pass through the list from left to right. If we encounter an entry which is
smaller than some of its predecessors then we need to move it as far left as is
appropriate. We shift as many elements to the right as needed to make room
for it and then insert it (hence the name) in the proper position.

3 Visualization

Consider the following list:

4 3 1 8 3

We don’t bother to look at A[0]==4 because nothing to the left could be larger,
because there’s nothing to the left of it.

Thus we first look at A[1]==3 and note that there is one larger element to the
left:

4 3 1 8 3

We shift it to the right and insert the 3 where it belongs:

3 4 1 8 3

We then look at A[2]==1 and note that there are two larger elements to the
left:

3 4 1 8 3

We shift those to the right and insert the 1 where it belongs:

1 3 4 8 3

We next look at A[3]==8 and note that there are no larger elements to the left:

1 3 4 8 3

We do nothing. Again officially the pseudocode will actually shift nothing and
then assign A[3]=8, which is a bit wasteful but there we go.

We then look at A[4]==3 and note that there are two larger elements to the
left:

1 3 4 8 3

We shift those to the right and insert the 3 where it belongs:

1 3 3 4 8

Then we are done.
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4 Outline of Pseudocode

To help see how the pseudocode work, here is the general outline. Pseudo-
pseudocode, if you wish!

for i = 1 to n-1

key = A[i], the value to potentially be moved left.

j = i - 1, the first index to the left.

shift A[j] to the right while key < A[j] and j >= 0

j = j - 1

this while loop is shifting things right

to make room for key in the right place

once this ends either key >= A[j] and should be left alone,

meaning key should go into index j+1,

or j = -1, meaning key should go into index 0 = j+1

A[j+1] = key, so key is now in the right place

end

once this ends, everything is right

5 Pseudocode

Here is the pseudocode with time assignments. Here I’ve gone old-school and
tagged the while loop condition check as it clarifies a bit.

\\PRE: A is a list of length n.

for i = 1 to n-1 n− 1 iterations
key = A[i]

}
c1j = i-1

while j >= 0 and key < A[j] c2 each time there’s a check
A[j+1] = A[j]

}
c3j = j - 1

end

A[j+1] = key c4
end

\\POST: A is sorted.

Here key holds the value at index i needs to be stored as we check to the left
of it and potentially shift any larger left element to the right. Once we have
moved those to the right we insert key into its appropriate position.

Notice that the while loop checks not just whether the element to the left is
larger but also whether that searching process falls off the front of the list. It
stops in either case, of course. In the case where it falls off the front of the list
we have j==-1 and we need to insert key at index 0==j+1. In the case where it
encounters an element at index j which is smaller or equal than key and which
does not need to be moved, it must insert key to the right of it at index j+1.
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This is why the line after the while loop is A[j+1] = key.
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6 Time Complexity Analysis

The time complexity analysis for InsertionSort is very different than BubbleSort
and SelectionSort. This is due to the while loop which results in an unknown
number of iterations. For a particular input of length n this loop could iterate
never or perhaps a number of times linearly dependent on n. We thus have to
separate cases.

1. Best-Case:

In a best-case scenario the while loop fails every time, which will happen
iff the listed is sorted. In such a case we have:

T (n) = (n− 1)(c1 + c2 + c4) = Θ(n)

2. Worst-Case:

In a worst-case scenario the while loop passes as many times as possible,
which will happen iff the list is in reverse order.

More specifically the while loops will pass for j = i−1, i−2, ..., 0 (a total
of i times) and fail at j = −1.

In such a case we will have:

T (n) =

n∑
i=1

[c1 + (i)(c2 + c3) + c2 + c4] = ... = Θ(n2)
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3. Average Case:

First we’ll observe that the running time can be written in terms of the
number of inversions which exist in the original list. An inversion is a
pair of indices (i, j) such that i < j and A[i] > A[j].

Example 6.1. In our original list:

4 3 1 8 3

In this list there are 5 inversions: (0, 1) (because A[0] > A[1]), (0, 2)
(because A[0] > A[2]), (0, 5) (because A[0] > A[5]), (1, 2) (because
A[1] > A[2]), and (3, 4) (because A[3] > A[4]).

If we consider the pseudocode carefully we see that each time an element is
shifted (to the right) in preparation for an insertion that we are essentially
correcting/removing an inversion.

Example 6.2. In our original list of [4, 3, 1, 8, 3] we have five inversions
and if we check back we see we shifted five elements.

Moreover since each shift corresponds to the while loop passing exactly
once this means that the number of times the while loop passes is equal
to the number of inversions in the list.

In light of this consider the time requirements again:

• For each of i=1,...,n-1 we have c1 + c4 before and after the while

loop.

• For each inversion the while loop criteria will pass exactly once,
requiring time c2 + c3.

• For each of i=1,...,n-1 the while loop criteria will fail exactly
once, either after shifts have occurred or at the start if no shifts were
necessary, requiring time c2.

Thus if there are I inversions then the total time requirement will be
as follows, where C+P means “while loop checks and passes” and C+F
means “while loop checks and fails”.

T (n, I) = (n− 1)(c1 + c4)︸ ︷︷ ︸
Pre+Post-While

+ I(c2 + c3)︸ ︷︷ ︸
C+P

+ (n− 1)(c2)︸ ︷︷ ︸
C+F

For the sake of simplicity let’s assume no duplicates in what follows.

In an arbitrary list if we look at all possible there are C(n, 2) pairs of
elements and therefore C(n, 2) possible inversions. For example in a list
of length n = 5 there are C(5, 2) = 10 possible inversions. If the list is
sorted there are 0 and if the list is in reverse order there are 10.

If we look at all possible lists, it turns out that on average we will have
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I = I(n) = C(n, 2)/2 inversions and so the average the time requirement
will be:

T (n, I(n)) = T

(
n,

C(n, 2)

2

)
= ... = Θ(n2)
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7 Auxiliary Space

The auxiliary space is O(1).

8 Stability

InsertionSort is stable. This is because InsertionSort shifts elements to the left
while they are smaller than those elements. Consequently an element will not
be shifted to the left of an equal element and so the order of equal elements will
be preserved.

9 In-Place

InsertionSort is in-place.

10 Notes

After k iterations the first k elements are sorted but not necessarily correctly
placed. If InsertionSort were running on a very long list and it was forced to
stop early this means that some amount of the beginning of the list would be
sorted but in the wrong position and the end would not be sorted at all. This
is different from both BubbleSort and SeledtionSort.

Example 10.1. Consider the list:

[7,8,9,4,5,6,1,2,3]

The first six iterations operate on the elements 7, 8, 9, 4, 5, and 6. The first
three don’t move but they still count as iterations as far as the psedocode is
concerned.

The result is then:

[4,5,6,7,8,9,1,2,3]

Notice that the first six elements are sorted relative to one another but they
are certainly not in their correct overall locations. It will take three more
iterations to move the 1,2,3 for this to be the case.
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11 Thoughts, Problems, Ideas

1. Show the step-by-step operation of InsertionSort on the list {5, 10, 3, 0,−6, 9}.
2. Assuming all constant times equal 1, fill in the details of the worst-case

time calculation:

T (n) =

n−1∑
i=0

c1 + i(c2 + c3) + c2 + c4 = ... = Θ(n2)

3. Assuming all constant times equal 1, fill in the details of the average-case
time calculation:

T (n, I(n)) = T

(
n,

C(n, 2)

2

)
= ... = Θ(n2)

4. Modify InsertionSort so the list is sorted in decreasing order.

5. The basic premise of InsertionSort is that for each index i we effectively
shift everything to the left of this index which smaller than the value at
this index to the right by 1 and then insert (hence the name) the value
in the empty left location. Suppose you had a function rshift(A,a,b)

which shifted the subarray A[a,...,b] to the right by 1. Use this to
develop a pseudocode version of InsertionSort. For each i this version
should scan left until it finds where to put A[i], then shift everything
necessary to the right, and then insert. If rshift operates with constant
time complexity what is the worst-case O time complexity of your new
pseudocode?

6. Another way to think of InsertionSort is that for each index i we want
to know where to the left to insert it. Note that for each i the sublist
to the left is always sorted as the algorithm progresses. Call this target
index k. The series of swaps effectively shifts A[k,...,i-1] to the right
and inserts the original A[i] to index k. Suppose you had a function
locateindex(A,i) which would find the correct index in A[0,...,i-1]

to insert A[i]. Use this to develop a pseudocode version of InsertionSort.
You’ll still need to do the swapping manually.

7. Suppose you had both rshift and locateindex from the previous two
problems. Now write the new pseudocode. If the time complexity of
locateindex is L(n) and the time complexity of rshift is R(n) what
would need to be true of these in order for the resulting search to be
O-better than InsertionSort?

8. Arguably the pseudocode is a bit confusing because the search index j is
actually always one less than the target position. Tweak the pseudocode
to change this.

9. We saw that in the average case the pseudocode has time requirement:

T (n, I) = n(c1 + c4) + I(c2 + c3) + n(c2)
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where I is the number of inversions in the input list. The reason that
the average case turns out to be O(n2) is that on average the number of
inversions satisfies I(n) = O(n2). We’ll say a list of length n is logarithmi-
cally sorted (I made that term up) if the number of inversions is at most
d(lg n/n)C(n, 2)e. For example a logarithmically sorted list of length 10
will have at most d(lg 10/10)C(10, 2)e = 12 inversions. Calculate the O
average time complexity of the pseudocode if it only encounters such lists.
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12 Python Test

Code:

import random

A = []

for i in range (0 ,10):

A.append(random.randint (0 ,100))

n = len(A)

print(A)

for i in range(0,n):

key = A[i]

print(’Checking ’ + str(key) + ’ at index ’ + str(i))

j = i-1

howmanytoleft = 0

while j>=0 and key <A[j]:

howmanytoleft = howmanytoleft + 1

A[j+1] = A[j]

j = j - 1

if howmanytoleft == 0:

print(’There are 0 larger elements to the left. Leave alone.’)

else:

A[j+1] = key

print(’There are ’ + str(howmanytoleft) + ’ larger elements to the left.’)

print(’Shift and insert: ’ + str(A))

print(A)

11



Output:

[31, 24, 77, 79, 53, 20, 20, 75, 46, 0]

Checking 31 at index 0

There are 0 larger elements to the left. Leave alone.

Checking 24 at index 1

There are 1 larger elements to the left.

Shift and insert: [24, 31, 77, 79, 53, 20, 20, 75, 46, 0]

Checking 77 at index 2

There are 0 larger elements to the left. Leave alone.

Checking 79 at index 3

There are 0 larger elements to the left. Leave alone.

Checking 53 at index 4

There are 2 larger elements to the left.

Shift and insert: [24, 31, 53, 77, 79, 20, 20, 75, 46, 0]

Checking 20 at index 5

There are 5 larger elements to the left.

Shift and insert: [20, 24, 31, 53, 77, 79, 20, 75, 46, 0]

Checking 20 at index 6

There are 5 larger elements to the left.

Shift and insert: [20, 20, 24, 31, 53, 77, 79, 75, 46, 0]

Checking 75 at index 7

There are 2 larger elements to the left.

Shift and insert: [20, 20, 24, 31, 53, 75, 77, 79, 46, 0]

Checking 46 at index 8

There are 4 larger elements to the left.

Shift and insert: [20, 20, 24, 31, 46, 53, 75, 77, 79, 0]

Checking 0 at index 9

There are 9 larger elements to the left.

Shift and insert: [0, 20, 20, 24, 31, 46, 53, 75, 77, 79]

[0, 20, 20, 24, 31, 46, 53, 75, 77, 79]
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