CMSC 351: Integer Addition

Justin Wyss-Gallifent
April 4, 2021

[TIntroductionl.o
2 Schoolbook Additionlo
13 Pseudocode|o
K Pseudocode Time Complexity|
o Improvments| L.
6 oughts, Problems, Ideas

ython lest an utput

1 Introduction

Suppose we have two n-digit numbers and wish to add them. What is the
worst-case time complexity of this operation?

2 Schoolbook Addition

The first and most obvious way to add two numbers is the way we learn in
school. We add digit-by-digit and carry if necessary:

3 Pseudocode

If we store each number digit-by-digit in arrays A and B then the pseudocode for
adding them and putting the result in c is as follows. To make things a little
simpler we are storing the 1’s digit in A[0], the 10’s digit in A[1] and so on, so
we print the lists backwards.

\\ PRE: A and B are lists of length n containing
A\ the digits of two numbers.
\\ PRE: C is an empty list of length n+1.
C = 1list of Os of length n+1
carry = 0
for i in range(O,n):
C[i]l = A[i]l + B[il + carry
if Cc[i]l > 9
carry = the 10s digit of C[i]
C[i] = the 1s digit of C[i]
else
carry = 0
end
end
C[n] = carry
\\ POST: C contains the digit-by-digit result of adding A and B.

4 Pseudocode Time Complexity

What is the time complexity of this algorithm? Well it does constant-time op-
erations before the loop, n constant-time operations for the loop, and constant-
time operations after the loop, so worst-case, best-case, and average-case are all

O(n).

5 Improvments

Could we do any better?

For numbers ay,...a; and b,...by we wish to find ¢,11¢,...c1 (we go to ¢pia
because there may be an additional digit). To find ¢; we absolutely have to
calculate a; + b since there is no other way to find that digit since we certainly
can’t figure it out from the remaining a; and b;.

Likewise to calculate co we’ll potentially need a carry digit from a; 4+ b7 but
again we absolutely have to calculate as + b2. This pattern continues and in
general we have no choice but to do the individual digit additions. Thus there
are n required operations for a time complexity of O(n).

Thoughts, Problems, Ideas

. Assume A and B are binary strings of length n and rewrite the pseducode,
removing addition and comparison and instead using logical operators and
(only once) and xor (only once).

. The addition pseudocde can be rewritten to eliminate carry and instead
store the carry pre-emptively in C. Do so.

. Two’s Complement: For a given binary number B the Two’s Complement
of the number is obtained by negating all the bits and adding 1. For
example the two’s complement of B=01101 is not (B)+1=10010+1=10011.
For a number B with IV bits if we add B and its two’s complement we always
get 2V, for example B+not (B)+1=01101+10011=100000. Consequently for
A>=B we have A+not (B) +1=A+(2"N)-B=2"N+(A-B) and so we can calculate
A-B by instead calculating A+not (B)+1 and ignoring the resulting leftmost
digit. For example:

1011101-0110111 = 1011101+not (0110111)+1
=1011101+1001000+1
=40100110

Write the pseudocode for this. Just for extra fun and excitement:

e Do not use a carry bit.
e Do not use any conditionals.

e Use only one loop.

You can just assume the additional resulting bit will be ignored.

7 Python Test and Output

Code:

import random

A =1

B = [I]

for i in range(0,7):
A.append(random.randint (0,9))
B.append (random.randint (0,9))

n = len(A)
print (° > + str(A[::-11))
print (° > + str(B[::-11))

C = [0] * (n+1)
carry = 0
for i in range(O,n):
C[il = A[i] + B[i] + carry

if carry == O0:
print (str (A[i])+’+’+str(B[i])+’="+str(C[i]))
else:
print (str(A[i])+ + +str(B[i])+ ’+ ’+str(carry)+’=’+str
(Cc[il))

if C[i]l > 9:
carry = C[i] // 10
Ccl[il = c[il % 10
print (’Carry the ’+str(carry))
else:
carry = 0
C[n] = carry

print(C[::-11)

Output:

[7, 2, 8, 9, 9, 6, 2]
[2, 6, 8, 3, 4, 3, 0]

2+0=2

6+3=9

9+4=13

Carry the 1

9+3+1=13

Carry the 1

8+8+1=17

Carry the 1

2+6+1=9

7+2=9

(o, 9, 9, 7, 3, 3, 9, 2]

	Introduction
	Schoolbook Addition
	Pseudocode
	Pseudocode Time Complexity
	Improvments
	Thoughts, Problems, Ideas
	Python Test and Output

