
CMSC 351: Integer Addition

Justin Wyss-Gallifent

April 4, 2021

1 Introduction . 2
2 Schoolbook Addition . 2
3 Pseudocode . 2
4 Pseudocode Time Complexity . 2
5 Improvments . 3
6 Thoughts, Problems, Ideas . 4
7 Python Test and Output . 5

1

1 Introduction

Suppose we have two n-digit numbers and wish to add them. What is the
worst-case time complexity of this operation?

2 Schoolbook Addition

The first and most obvious way to add two numbers is the way we learn in
school. We add digit-by-digit and carry if necessary:

1 1 1

3 6 7 2 8
6 5 9 1 6

1 0 2 6 4 4

3 Pseudocode

If we store each number digit-by-digit in arrays A and B then the pseudocode for
adding them and putting the result in c is as follows. To make things a little
simpler we are storing the 1’s digit in A[0], the 10’s digit in A[1] and so on, so
we print the lists backwards.

\\ PRE: A and B are lists of length n containing

\\ the digits of two numbers.

\\ PRE: C is an empty list of length n+1.

C = list of 0s of length n+1

carry = 0

for i in range(0,n):

C[i] = A[i] + B[i] + carry

if C[i] > 9

carry = the 10s digit of C[i]

C[i] = the 1s digit of C[i]

else

carry = 0

end

end

C[n] = carry

\\ POST: C contains the digit-by-digit result of adding A and B.

4 Pseudocode Time Complexity

What is the time complexity of this algorithm? Well it does constant-time op-
erations before the loop, n constant-time operations for the loop, and constant-
time operations after the loop, so worst-case, best-case, and average-case are all
Θ(n).

2

5 Improvments

Could we do any better?
For numbers an...a1 and bn...b1 we wish to find cn+1cn...c1 (we go to cn+1

because there may be an additional digit). To find c1 we absolutely have to
calculate a1 + b1 since there is no other way to find that digit since we certainly
can’t figure it out from the remaining ai and bi.

Likewise to calculate c2 we’ll potentially need a carry digit from a1 + b1 but
again we absolutely have to calculate a2 + b2. This pattern continues and in
general we have no choice but to do the individual digit additions. Thus there
are n required operations for a time complexity of Θ(n).

3

6 Thoughts, Problems, Ideas

1. Assume A and B are binary strings of length n and rewrite the pseducode,
removing addition and comparison and instead using logical operators and
(only once) and xor (only once).

2. The addition pseudocde can be rewritten to eliminate carry and instead
store the carry pre-emptively in C. Do so.

3. Two’s Complement: For a given binary number B the Two’s Complement
of the number is obtained by negating all the bits and adding 1. For
example the two’s complement of B=01101 is not(B)+1=10010+1=10011.
For a number B with N bits if we add B and its two’s complement we always
get 2N , for example B+not(B)+1=01101+10011=100000. Consequently for
A>=B we have A+not(B)+1=A+(2^N)-B=2^N+(A-B) and so we can calculate
A-B by instead calculating A+not(B)+1 and ignoring the resulting leftmost
digit. For example:

1011101-0110111 = 1011101+not(0110111)+1

= 1011101+1001000+1

=6 10100110

Write the pseudocode for this. Just for extra fun and excitement:

• Do not use a carry bit.

• Do not use any conditionals.

• Use only one loop.

You can just assume the additional resulting bit will be ignored.

4

7 Python Test and Output

Code:

import random

A = []

B = []

for i in range (0,7):

A.append(random.randint (0,9))

B.append(random.randint (0,9))

n = len(A)

print(’ ’ + str(A[:: -1]))

print(’ ’ + str(B[:: -1]))

C = [0] * (n+1)

carry = 0

for i in range(0,n):

C[i] = A[i] + B[i] + carry

if carry == 0:

print(str(A[i])+’+’+str(B[i])+’=’+str(C[i]))

else:

print(str(A[i])+’+’+str(B[i])+’+’+str(carry)+’=’+str

(C[i]))

if C[i] > 9:

carry = C[i] // 10

C[i] = C[i] % 10

print(’Carry the ’+str(carry))

else:

carry = 0

C[n] = carry

print(C[:: -1])

Output:

[7, 2, 8, 9, 9, 6, 2]

[2, 6, 8, 3, 4, 3, 0]

2+0=2

6+3=9

9+4=13

Carry the 1

9+3+1=13

Carry the 1

8+8+1=17

Carry the 1

2+6+1=9

7+2=9

[0, 9, 9, 7, 3, 3, 9, 2]

5

	Introduction
	Schoolbook Addition
	Pseudocode
	Pseudocode Time Complexity
	Improvments
	Thoughts, Problems, Ideas
	Python Test and Output

