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1 Introduction

Suppose we have two n-digit numbers and wish to multiply them. What is the
worst-case time complexity of this operation?

2 Schoolbook Multiplication

2.1 Method

The first and most obvious way to multiply two numbers is the way we learn in
school. Here is an example. The carry digits are not shown:

1 0 2
2 5 7
7 1 4

5 1 0
2 0 4
2 6 2 1 4

2.2 Time Complexity

What is the time complexity of this algorithm? Well row i in the intermediate
calculation equals digit bi multiplied by each digit in A, (with a possible carry
addition) so row i requires n operations. Since there are n rows there are n2 digit
multiplications (each with a possible carry addition). Without even worrying
about the additions we’re at Θ(n2).

Could we do any better?
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3 A Sneaky Approach

3.1 Two 2-Digit Numbers

Let A = a1a0 and B = b1b0 be the base-10 digit representations of two 2-digit
numbers. In reality then A = 10a1 + a0 and B = 10b1 + b0 and the product is:

AB = (10a1 + a0)(10b1 + b0) = 100a1b1 + 10(a1b0 + a0b1) + a0b0

For now let’s ignore the 100 and the 10 and consider that we have four multi-
plications. Can we do better?

Observe that:

a1b0 + a0b1 = (a1 + a0)(b1 + b0) − a0b0 − a1b1

So consequently the middle expression can actually be calculated using two
multiplications that we’ve already done as well as one new one. In summary:

AB = 100a1b1 + 10 [(a1 + a0)(b1 + b0) − a0b0 − a1b1] + a0b0

Of course you may observe that the newly required product (a1+a0)(b1+b0) may
itself be the product of two 2-digit numbers but for now let’s just be satisfied
that they’re certainly smaller than the original two 2-digit numbers.

In addition in order to guarantee that we have actually obtained the digits of
the product AB we will actually need to perform the multiplications by 100 and
10 and the resulting additions.

However multiplication by a 100 can be done using two decimal shifts (insert
two zeros) and multiplication by 10 can be done using one decimal shift (insert
one zero) and shifting by n digits is Θ(n) (insert n zeros).

Thus in total to calculate all of the required digits precisely we have:

• A total of 3 multiplications, a0b0, a1b1, and (a1 + a0)(b1 + b0), two of
which have half as many digits as the original two numbers and one is a
significantly easier product.

• A total of 6 additions/subtractions of numbers with at most 4 digits.

• A total of 2 + 1 = 3 decimal shifts.
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3.2 Two 4-Digit Numbers

Suppose we wanted to calculate a product such as (1234)(5678). Ordinarily this
would take 16 single-digit multiplications.

Instead let’s write two 4-digit numbers as A = A1A0 and B = B1B0 where the
Ai and Bi are pairs of digits. In reality then A = 100A1+A0 and B = 100B1+B0

and the product is:

AB = (100A1 + A0)(100B1 + B0) = 10000A1B1 + 100(A1B0 + A0B1) + A0B0

Again observe that:

A1B0 + A0B1 = (A1 + A0)(B1 + B0) −A0B0 −A1B1

So once again the middle term can be calculated using two multiplications that
we’ve already done as well as one new one, and again the required new product
is certainly simpler than the original one. In summary again:

AB = 10000A1B1 + 100 [(A1 + A0)(B1 + B0) −A0B0 −A1B1] + A0B0

To calculate this out in order to obtain the digits we have:

• A total of 3 multiplications, A0B0, A1B1, and (A1 + A0)(B1 + B0), two
of which have half as many digits as the original two numbers and one is
a significantly easier product.

• A total of 6 additions/subtractions of numbers with at most 8 digits.

• A total of 4 + 2 = 6 decimal shifts.

Importantly note that the three multiplications can essentially be done by ap-
plying the method for two 2-digit numbers.

3.3 Generalized

This approach will then extend to two 8-digit numbers, two 16-digit numbers,
and so on. In general if A = A1A0 and B = B1B0 where the Ai and Bi are two
n-digit numbers where (for simplicity) we’ll say n is even then we can write:

AB = 10n(A1B1) + 10n/2 [(A1 + A0)(B1 + B0) −A0B0 −A1B1] + A0B0

Then we can reduce finding the digits of AB to:

• A total of 3 multiplications, A0B0, A1B1, and (A1 + A0)(B1 + B0), two
of which have half as many digits as the original two numbers and one is
a significantly easier product.

• A total of 6 additions/subtractions of numbers with at most 2n digits.

• A total of n + n/2 decimal shifts.
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4 Karatsuba Method Theory

This leads to the following generalized observation. Suppose A and B are both
n digit numbers. Calculation of the digits of the multiplication AB can be
done using three multiplications involving numbers with essentially half as many
digits and then Θ(n) worth of addition and shifts.

Thus if T (n) is the time complexity for multiplying A and B then T (n) satisfies:

T (n) = 3T (n/2) + Θ(n)

The Master Theorem with a = 3, b = 2 and c = 1 tells us that since 1 < log2 3
that:

T (n) = Θ(nlog2 3) = Θ(nlg 3) ≈ Θ(n1.5849625)

This is significantly faster than Θ(n2), especially for large n.

For smaller n of course it depends upon the actual specifics of the time require-
ments.

Note 4.0.1. We’re playing fast and loose with powers of 2, half-sizes and so
on, but this is just to keep the explanation tidy and avoid fiddly cases and floor
and ceiling functions. The result still holds with those details added, it’s just
far harder to understand.

Note 4.0.2. As we’ll see in the actual Python implementation for small numbers
the savings (in single-digit multiplications) are practically nonexistent. For large
numbers they’re very noticeable.
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5 Karatsuba Method Implementation

5.1 Recursion Note 1

The implementation is actually sneakier than we might suspect. Recall the
original case where A = a1a0 and b = b1b0 we noticed that the product (a1 +
a0)(b1 + b0) could potentially be a product of two 2-digit numbers. When
applying the Karatsuba method we use recursion even here if necessary to ensure
the reduction of everything to single-digit products.

So for example if A = 76 and B = 48 then we have:

(76)(48) = 100(7)(4) + 10 [(7 + 6)(4 + 8) − (7)(4) − (6)(8)] + (6)(8)

Note the central term (13)(12). We apply recursion again:

(13)(12) = 100(1)(1) + 10 [(1 + 3)(1 + 2) − (1)(1) − (3)(2)] + (3)(2)

Now the central term involves the multiplication of two 1-digit numbers.

5.2 Recursion Note 2

In the case where one of A and B has one digit then even if the other has more
than one, at this point it’s certainly Θ(n) to simply multiply. Consequently the
actual implementation of Karatsuba’s algorithm uses this as the base case in
the recursion so we’ve done this in the pseudocode too.

5.3 Splitting Note

Since it’s entirely possible that A and B have differing numbers of digits we
split based upon the shortest one in order to guarantee that both can, in fact,
be split. Additionally we split from the right side (the units digit) to ensure
that the decimal shifting (multiplication by powers of 10) works appropriately.
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6 Tree Diagrams

A tree diagram can succinctly show how Karatsuba’s Algorithm plays out in
terms of the breaking down to single-digit multiplications.

Example 6.1. Consider the product (98)(57). This tree breaks down all the
products until one of the numbers is single-digit:

(9
∣∣8)(5

∣∣7)

(9)(5)
+1 SDM

(9 + 8)(5 + 7)
= (1

∣∣7)(1
∣∣2)

(1)(1)
+1 SDM

(1 + 7)(1 + 2)
= (8)(3)
+1 SDM

(7)(2)
+1 SDM

(8)(7)
+1 SDM

From here we can see that there are 5 single-digit multiplications. This example
is actually slower than schoolbook multiplication, which would require (2)(2) =
4 single-digit multiplications. �

Example 6.2. Consider the product (1354)(4021). This tree breaks down all
the products until one of the numbers is single-digit:

(13
∣∣54)(40

∣∣21)

(1
∣∣3)(4

∣∣0)

(1)(4)
+1 SDM

(1 + 3)(4 + 0)
= (4)(4)
+1 SDM

(3)(0)
+1 SDM

(13 + 54)(40 + 21)
= (6

∣∣7)(6
∣∣1)

(6)(6)
+1 SDM

(6 + 7)(6 + 1)
= (13)(7)
+2 SDM

(7)(1)
+1 SDM

(5
∣∣4)(2

∣∣1)

(5)(2)
+1 SDM

(5 + 4)(2 + 1)
(9)(3)

+1 SDM

(4)(1)
+1 SDM

From here we can see that there are 10 single-digit multiplications. This example
is faster than schoolbook multiplication, which would require (4)(4) = 16 single-
digit multiplications.

�
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7 Pseudocode

The pseudocode can be a bit confusing because it needs to manage two numbers
with differing numbers of digits, it needs to manage finding a split location and
split from the right, and it needs to manage the powers of 10 correctly.

\\ A,B are the list representations of numbers.

function karatsuba(A,B)

if either A or B is single -digit

return(A*B)

else

sp = floor(( minimum number of digits in A,B)/2)

A1,A0 = split A, sp digits from the right

B1,B0 = split B, sp digits from the right

k1 = karatsuba(A1 ,B1)

k2 = karatsuba(A1+A0 ,B1+B0)

k3 = karatsuba(A0 ,B0)

// The powers of 10 should be thought of as shifts.

r = 10^(2* sp)*k1 + 10^(sp)*(k2-k3-k1) + k3

return(r)

end

end
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8 Thoughts, Problems, Ideas

1. Draw a tree diagram for Karatsuba’s Algorithm applied to (12)(34) and
use it to count the number of SDMs.

2. Draw a tree diagram for Karatsuba’s Algorithm applied to (98)(76) and
use it to count the number of SDMs.

3. Draw a tree diagram for Karatsuba’s Algorithm applied to (1201)(2231)
and use it to count the number of SDMs.

4. Draw a tree diagram for Karatsuba’s Algorithm applied to (345)(12231)
and use it to count the number of SDMs. This is a little trickier than
the previous few because of the different integer lengths. Trust the pseu-
docode!

5. Let A = a2a1a0 and B = b2b1b0 be the base-10 digit representations of
two 3-digit numbers. Formally then A = 100a2 + 10a1 + a0 and B =
100b2 + 10b1 + b0.

(a) Evaluate the product AB and collect the result into the form:

10000(T1) + 1000(T2) + 100(T3) + 10(T4) + (T5)

We’ll say that the T1,... are the terms. How many different products
arise in all of the terms together?

(b) Rewrite the terms T2 and T4 in such a way as to reduce the number
of total multiplications which are necessary to evaluate the product
down to 7.

(c) Explain (not even pseucode) how this might lead to a recursive algo-
rithm for multiplication much like the Karatsuba Algorithm.

(d) Write down the recurrence relation for this algorithm and solve it
using the Master Theorem. Is it faster or slower than Karatsuba?
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6. We observed that if n is even and A = A1A0 and B = B1B0 are two
n-digit numbers that the special product (A1 + A0)(B1 + B0) might not
be a product of two n/2-digit numbers, thereby making the recurrence
relation T (n) = 3T (n/2) + Θ(n) feel a little iffy. We glossed over this but
let’s patch it a bit.

(a) Show that in the n = 2 case that even if both a1 + a0 and b1 + b2 are [10 pts]
not single-digit numbers that the product (a1 + a0)(b1 + b0) can be
calculated using one single-digit multiplication and Θ(n) additions
and decimal shifts.

(b) Generalize this argument in the following sense: Show that even if [10 pts]
both A1+A0 and B1+B0 are not n/2-digit numbers that the product
(A1 + A0)(B1 + B0) can be calculated using one n/2-digit multipli-
cation and Θ(n) additions and decimal shifts, thereby rendering the
recurrence relation accurate.
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9 Python Code and Output

Code:

import random

import math

numdig = 4

AA = random.randint (10**( numdig -1) ,10**( numdig )-1)

BB = random.randint (10**( numdig -1) ,10**( numdig )-1)

mcounter = 0

AA = 3451

BB = 45862

def karatsuba(A,B,indent ):

global mcounter

#print(indent*’ ’ + ’Pair = ’ + str(A) + ’ ’ + str(B))

if A<10 or B<10:

mcounter = mcounter + (len(str(A))*len(str(B)))

print(indent*’ ’ + ’Base Product = ’ + str(A*B))

return(A*B)

else:

AS = [int(i) for i in str(A)]

BS = [int(i) for i in str(B)]

sl = min(len(AS),len(BS)) // 2

A1 = int(’’.join(map(str ,AS[0: len(AS)-sl])))

A0 = int(’’.join(map(str ,AS[len(AS)-sl :])))

B1 = int(’’.join(map(str ,BS[0: len(BS)-sl])))

B0 = int(’’.join(map(str ,BS[len(BS)-sl :])))

print(indent*’ ’ + ’Recurse to (A1,B1) = (’+str(A1)+’,’+str(B1)+’)’)

k1 = karatsuba(A1 ,B1 ,indent +2)

print(indent*’ ’ + ’Recurse to (A1+A0,B1+B0) = (’+str(A1)+’+’+str(A0)+’,’+str(B1)+’+’+str(B0)+’) = (’+str(A1+A0)+’,’+str(B1+B0)+’)’)

k2 = karatsuba(A1+A0 ,B1+B0 ,indent +2)

print(indent*’ ’ + ’Recurse to (A0,B0) = (’+str(A0)+’,’+str(B0)+’)’)

k3 = karatsuba(A0 ,B0 ,indent +2)

k = (10**(2* sl))*k1 + (10**( sl))*(k2-k3-k1) + k3

print(indent*’ ’ + ’Product = ’ + str (10**(2* sl)) + ’*’ + str(k1) + ’+’ + str (10** sl) + ’*(’ + str(k2) + ’-’ + str(k3) + ’-’ + str(k1) + ’)+’ + str(k3) + ’ = ’ + str(k))

return(k)

print(’Start (A,B) = (’+str(AA)+’,’+str(BB)+’)’)

p = karatsuba(AA,BB ,2)

print(’n = ’ + str(numdig ))

print(’Result: ’ + str(p))

print(’Number of SDM: ’ + str(mcounter ))

print(’Note that ’+str(numdig )+’^lg(3) = ’ + str(numdig **math.log (3 ,2)))

print(’Direct Python Calculation: ’ + str(AA*BB))

print(’Would Take SDM: ’ + str(numdig **2))
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Output with two 2-digit numbers. Observe this takes exactly the same number
of SDM as schoolbook multiplication and a bit less than twice nlg 3:

Start (A,B) = (95 ,96)

Recurse to (A1 ,B1) = (9,9)

Base Product = 81

Recurse to (A1+A0 ,B1+B) = (9+5 ,9+6) = (14 ,15)

Recurse to (A1 ,B1) = (1,1)

Base Product = 1

Recurse to (A1+A0 ,B1+B) = (1+4 ,1+5) = (5,6)

Base Product = 30

Recurse to (A0 ,B0) = (4,5)

Base Product = 20

Product = 100*1+10*(30 -20 -1)+20 = 210

Recurse to (A0 ,B0) = (5,6)

Base Product = 30

Product = 100*81+10*(210 -30 -81)+30 = 9120

n = 2

Result: 9120

Number of SDM: 5

Note that 2^lg(3) = 3.0000000000000004

Direct Python Calculation: 9120

Would Take SDM: 4

Output with two 3-digit numbers. Observe this takes exactly the same number
of SDM as schoolbook multiplication and again a bit less than twice nlg 3:

Start (A,B) = (840 ,240)

Recurse to (A1 ,B1) = (84 ,24)

Recurse to (A1 ,B1) = (8,2)

Base Product = 16

Recurse to (A1+A0 ,B1+B) = (8+4 ,2+4) = (12 ,6)

Base Product = 72

Recurse to (A0 ,B0) = (4,4)

Base Product = 16

Product = 100*16+10*(72 -16 -16)+16 = 2016

Recurse to (A1+A0 ,B1+B) = (84+0 ,24+0) = (84 ,24)

Recurse to (A1 ,B1) = (8,2)

Base Product = 16

Recurse to (A1+A0 ,B1+B) = (8+4 ,2+4) = (12 ,6)

Base Product = 72

Recurse to (A0 ,B0) = (4,4)

Base Product = 16

Product = 100*16+10*(72 -16 -16)+16 = 2016

Recurse to (A0 ,B0) = (0,0)

Base Product = 0
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Product = 100*2016+10*(2016 -0 -2016)+0 = 201600

n = 3

Result: 201600

Number of SDM: 9

Note that 3^lg(3) = 5.704522494691118

Direct Python Calculation: 201600

Would Take SDM: 9
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Output with two 4-digit numbers. Observe this takes fewer SDM as schoolbook
multiplicaion and again a bit less than twice nlg 3:

Start (A,B) = (7087 ,2600)

Recurse to (A1 ,B1) = (70 ,26)

Recurse to (A1 ,B1) = (7,2)

Base Product = 14

Recurse to (A1+A0 ,B1+B) = (7+0 ,2+6) = (7,8)

Base Product = 56

Recurse to (A0 ,B0) = (0,6)

Base Product = 0

Product = 100*14+10*(56 -0 -14)+0 = 1820

Recurse to (A1+A0 ,B1+B) = (70+87 ,26+0) = (157 ,26)

Recurse to (A1 ,B1) = (15 ,2)

Base Product = 30

Recurse to (A1+A0 ,B1+B) = (15+7 ,2+6) = (22 ,8)

Base Product = 176

Recurse to (A0 ,B0) = (7,6)

Base Product = 42

Product = 100*30+10*(176 -42 -30)+42 = 4082

Recurse to (A0 ,B0) = (87 ,0)

Base Product = 0

Product = 10000*1820+100*(4082 -0 -1820)+0 = 18426200

n = 4

Result: 18426200

Number of SDM: 10

Note that 4^lg(3) = 9.000000000000002

Direct Python Calculation: 18426200

Would Take SDM: 16
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Summary with two 10-digit numbers. Observe this takes fewer SDM as school-
book multiplicaion and again a bit less than twice nlg 3:

Pair = 8035207000 9075773597

...

n = 10

Result: 72925719537029579000

Number of SDM: 64

Note that 10^lg(3) = 38.45585757936911

Direct Python Calculation: 72925719537029579000

Would Take SDM: 100

Summary with two 20-digit numbers. Observe this takes fewer SDM as school-
book multiplicaion and again a bit less than twice nlg 3:

Pair = 49521157366056646229 93687401978021091533

...

n = 20

Result: 4639508576570589185099645217795808279057

Number of SDM: 222

Note that 20^lg(3) = 115.36757273810733

Direct Python Calculation: 4639508576570589185099645217795808279057

Would Take SDM: 400

Very brief summary with two 100-digit numbers (numbers not listed):

n = 100

Result: ...

Number of SDM: 2721

Note that 100^lg(3) = 1478.8529821647205

Direct Python Calculation: ...

Would Take SDM: 10000

Very brief summary with two 1000-digit numbers (numbers not listed):

n = 1000

Result: ...

Number of SDM: 98486

Note that 1000^lg(3) = 56870.559662951775

Direct Python Calculation: ...

Would Take SDM: 1000000

In each case observe that that the number of SDM is a bit less than twice nlg 3

which aligns with our assertion that Karatsuba is Θ(nlg 3).
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