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1 Introduction:

Given an unsorted list of n distinct numbers suppose we wish to find the kth
smallest of those. Here both n and k can vary. How might we go about this?
This question arises when finding the minimum, the maximum, and, what is
valuable to us, the median.

Definition 1.0.1. The kth order element in a list is the kth smallest entry. So
the 1st order entry is the minimum, for example.

In what follows we shall assume that we have a list of distinct numbers.

2 Näıve Brute-Force Method

2.1 Approach

One brute-force method to finding the kth order entry might be to first find
the smallest, then the next smallest, and so on, until we reach the kth smallest.
This is not hard to implement, the pseudocode follows.

The general idea is that we find the minimum and assign it to kth. We then
iterate by repeatedly: Go through A and find the smallest which is less than the
maximum but larger than kth. This would be the next smallest. We do this
k-1 times since kth was already the 1st order statistic.

def kthorder(A,k):

n = len(A)

mini = minimum element in A

maxi = maximum element in A

kth = mini

for i = 1 to k-1

nextsmallest = maxi

for j = 0 to n-1:

if (A[j] < nextsmallest) and (A[j] > kth)

nextsmallest = A[j]

end

end

kth = nextsmallest

return(kth)

end

2.2 Time Complexity

Finding the maximum and minimum is Θ(n). The inner loop is Θ(n) and
iterates k − 1 times, and so the entire algorithm is Θ(n + (k − 1)n) = Θ(kn).
this isn’t bad and for a specific pre-determined k it’s just Θ(n) but we’d like
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something with a better time complexity for all possible n and k. For example
when finding the median k depends upon n. Could we possibly do better?
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3 Thoughts on Other Possibilities

There are a number of other approaches including:

3.1 Sorting First

We could simply sort the entire list and then select the (k−1)st entry (to adjust
for the index). We can use something like MergeSort or HeapSort which has
O(n lg n) time complexity. This is nice in the sense that our time complexity
does not depend on k.

3.2 Partially Sorting

We can do okay even with something like partial reverse BubbleSort. Each pass
of reverse Bubble sort will fix one more starting element and so if we do k passes
the time will essentially be:

n + (n− 1) + (n− 2) + ... + (n− k − 1) = Θ(kn)

Not really better than a brute force approach.

3.3 Using a Min Heap

Analogous to building a max heap we could build a min heap. When we built
a max heap we said it was worse-case O(n lg n) time complexity but this is not
asymptotically tight and in fact it is worse-case O(n) (we have not shown this)
and the same is true for a min heap. Since extracting an element and fixing
the heap takes worst-case O(lg n) time and we would do this k times the time
complexity would be worse-case O(n + k lg n).

These are all pretty good and interesting but can we do better overall? Perhaps
something that’s O(n) no matter what k is?
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4 QuickSelect - Decrease and Conquer

4.1 Approach

Its not at all clear how decrease-and-conquer might help here but it’s worth
recalling the initial step of QuickSort. What we did was we chose a pivot value
and then performed a partition on the list which resulted in the pivot value being
re-located such that all smaller values were to the left and all larger values to
the right. It follows that if the pivot value ends up at index p then the pivot
value, now A[p], is the (p + 1)st order entry.

If we want the (p+ 1)st order entry then we simply return A[p] and we’re done.

If we want order less than p+1 we know that the value we are seeking is smaller
and hence to the left of index p so we repeat the process (choose pivot value
and partition) on A[0, .., p− 1] whereas if we want order greater than p + 1 we
know that the value we are seeking is larger and hence to the right of index p
so we repeat the process (choose pivot value and partition) on A[p+ 1, .., n− 1]

What this then leads to is exactly a decrease-and-conquer approach which re-
duces the size of the list each time and results in the desired value being con-
strained in a smaller and smaller list.

Since the element of desired order certainly exists in the list if the target rank
is not found before the list reaches length 1 then it must be found at that point.

The partitioning process used in quicksort is Θ(n) which is great so the critical
issue here is how much we can shorten our sublist at east stage. If we can
shorten it quickly then the decrease-and-conquer approach may result in a time
complexity better than Θ(kn).

Shortening the sublist means making good pivot value choices at each stage.
It’s not clear yet how we will do this but for now we can at least write down
the pseudocode and fill in the pivot value choice details later.
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4.2 Pseudocode

Here is the pseudocode. The partition function is stolen from the Quick-
Sort pseudocode so we’ve omitted the details. Note that there is a critical
line pivotvalue = choosepivotindex(l,r) which needs details. At least for
right now, don’t worry about how this is done, the critical thing is that after
partition is called all the elements to the left of the pivot value are less than
the pivot value and all the elements to the right of the pivot value are more
than the pivot value.

def selectkth(A,L,R,k)

pivotindex = choosepivotindex(L,R)

A[index] <-> A[R]

pivotindex = partition(L,R)

if k-1 < pivotindex

return(selectkth(L,pivotindex -1,k))

else if k-1 > pivotindex

return(selectkth(pivotindex +1,R,k))

else

return(A[pivotindex ])

end

end

def partition(A,L,R)

same as quicksort

end

def choosepivotindex(A,L,R)

somehow pick an index in A[L,...,R]

return this index

end
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4.3 Time Complexity - The Beginning

Suppose a call to selectkth takes time T (n). This will then involve a call
to choosepivotindex, a call to partition, and a further call to selectkth.
Observe:

• Let’s say the call to choosepivotindex takes time CPI(n).

• The call to partition takes time Θ(n).

• The new call to selectkth will be on a sublist of length f(n) for some
function of n hence will take time T (f(n)).

Thus we have:

T (n) = CPI(n) + Θ(n) + T (f(n))

If the pivot value selection is not engineered well in choosepivotindex then
the pivot value could end up at one end or the other during each recursive call
to selectkth and the list would decrease in length by 1 each time. In this case
we would have f(n) = n− 1 and then:

T (n) = CPI(n) + Θ(n) + T (n− 1)

Even if CPI(n) = 0 we still end up with quadratic time complexity (you can
prove this!) so this is no better than brute force.

To fix this we need to engineer choosepivotindex well enough such that it
reduces the sublist by something significant (not just 1) each time and such
that it is fast enough that the first sum is small.
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4.4 Pivot Choice - Median of Medians

So now we need to figure out how to write the choosepivotindex function so
that it shrinks the list length by a good amount. The method we’ll use is the
Median of Medians.

The Median of Medians is a fast recursive method for finding a value close to
the median. There are a few ways this can be implemented but we’ll take the
standard approach of creating a method which results in mutual recursion.

Once we’ve established the median of medians function we will integrate it into
the pseudocode loosely as follows:

def selectkth(A,L,R,k)

mom ,index = mom(A[L:R])

A[momindex] <-> A[R]

pivotindex = partition(L,R)

if k-1 < pivotindex

return(selectkth(L,pivotindex -1,k))

else if k-1 > pivotindex

return(selectkth(pivotindex +1,R,k))

else

return(A[pivotindex ])

end

end

def partition(A,L,R)

same as quicksort

end

def mom(A)

find mom

return mom ,index

end
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Now on to how the Median of Medians method actually will work.

Broadly speaking the method works recursively as follows for a list containing
n elements:

1. Divide the list into bn/5c sublists of length 5 and perhaps one group with
the remaining elements and sort those sublists.

2. Select the median of each sublist. For the final sublist if it has two or four
elements select the lower median.

3. Apply selectkth recursively on the smaller list of those values in order
to find the median (or lower median) of that new list.

Note 4.4.1. You might wonder why we’re using sublists of length 5 and we will
discuss that later. Just to avoid confusion, though, we’ll use MOM-5 to denote
the Median of Medians using sublists of length 5.

Note that the call to selectkth inside this method itself will make calls to
partition and on to choosepivotindex, hence the mutual recursion. These
successive calls will be on smaller lists, of course.

Example 4.1. Let’s demonstrate MOM-5 on the following list:

10, 8, 5, 12, 11, 15, 21, 99, 7, 6, 70, 17, 3, 35, 71, 1, 2, 30, 36, 31, 32, 33, 60, 29, 28, 34, 40, 41, 80

First we divide this list into columns and sort each column:

5

8

10

11

12

6

7

15

21

99

3

17

35

70

71

1

2

30

31

36

28

29

32

33

60

34

40

41

80

The list formed by the medians (and lower median) of the columns is 10, 15, 35, 30, 32, 40
and calling selectkth specifically to get the (lower) median will return 30.
Of course this call to selectkth itself involves partitions and deeper calls to
the median of median function.

�
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Now that we see how MOM-5 will work, here is the pseudocode again with the
mutual recursion visible:

def selectkth(A,L,R,k)

mom ,index = mom(A[L:R])

A[momindex] <-> A[R]

pivotindex = partition(L,R)

if k-1 < pivotindex

return(selectkth(L,pivotindex -1,k))

else if k-1 > pivotindex

return(selectkth(pivotindex +1,R,k))

else

return(A[pivotindex ])

end

end

def partition(A,L,R)

same as quicksort

end

def mom(A,L,R)

divide A into sublists and sort those

mlist = new list of (lower ?) medians of sublists

s = apply selectkth to get the (lower ?) median of mlist

return index

end
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General Argument, Nice Case:

We claim that the value obtained by MOM-5 does a good job of subdividing
the list via partition. To see this let’s figure out exactly what property it has.

To keep the calculation simple assume we have a list of n elements where n is
an odd multiple of 5 in order to make the argument more straightforward. If
this is not the case we need to tweak the approach slightly but the same basic
outcome is guaranteed.

Consider this median of medians. Since it’s the median of a set of n/5 elements
it’s greater than or equal to d(n/5)/2e = dn/10e of them (because the median of
N elements is greater than or equal to dN/2e of them by definition). However
those themselves are greater than or equal to three others each, since they’re
each medians of 5. Thus our median of medians is greater than or equal to
3
⌈

n
10

⌉
≥ 3

10n elements in the original list.

In a symmetric fashion we can see that our median of medians is less than or
equal to 3

10n elements in the original list.

Thus if we choose either of the sublists consistings of elements less than the
median of medians or the elements greater than the median of medians and
denote its length by f(n) then we know:

3

10
n ≤ f(n) ≤ 7

10
n
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Example 4.2. Consider this list of 35 elements. Each column has been ordered
and the median of medians has been shaded:

5

8

10

11

12

6

7

15

21

99

3

17

35

70

71

9

13

16

22

37

28

29

32

33

60

1

2

30

31

36

50

51

57

58

73

Now let’s shade the medians of the other columns which are less than or equal
to 30 and within those columns let’s shade the values which are less than or
equal to their respective medians:

5

8

10

11

12

6

7

15

21

99

3

17

35

70

71

9

13

16

22

37

28

29

32

33

60

1

2

30

31

36

50

51

57

58

73

We can see that our median of medians, 30, is guaranteed to be greater than or

equal to 3 entries in each of 4 =
⌈
# Columns

2

⌉
=
⌈
n/5
2

⌉
columns. So it is greater

than or equal to 3 dn/10e entries in the entire list.

Similarly here is the picture showing the values which are guaranteed to be
greater than or equal to our median of medians:

5

8

10

11

12

6

7

15

21

99

3

17

35

70

71

9

13

16

22

37

28

29

32

33

60

1

2

30

31

36

50

51

57

58

73

�
If the number of elements is not an odd multiple of 5 then we need to tweak
the argument slightly because it may not be true for smaller n but turns out to
be true for large enough n, which is sufficient for time complexity arguments.
I have opted out of fiddling with the details because I think keeping it simple
helps understand what’s going on.

We’ll explore some of these quirks in the exercises.
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4.5 Return to Time Complexity

Recalling that we designated f(n) to be the function returning the size of the
sublist after partition is called, we now know that for a list of length n if we
choose the pivot value according to the median of medians apprach we have:

3

10
n ≤ f(n) ≤ 7

10
n

So now suppose that a call to selectkth takes time T (n). This call will then
involve a call to mom, a call to partition, and a call to selectkth. Observe:

• The call to mom involves the division into sublists, the small sorts, the new
list construction (length n/5) and a further call to selectkth. For a list
of length n this takes time Θ(n) + T (0.2n)

• The call to partition takes time Θ(n).

• The new call to selectkth will be on a sublist of length at most 7
10n hence

will take time T (0.7n).

Thus we now have a worst-case recurrence inequality involving T (n):

T (n) ≤ Θ(n) + T (0.2n) + Θ(n) + T (0.7n)

We can rewrite this as:

T (n) ≤ T (0.7n) + T (0.2n) + f(n) with f(n) = Θ(n)

We’d like to use this to figure out the time complexity of T (n). Because of the
inequality we’ll only be able to get a O time complexity on the worst-case. Note
that it is certainly possible to use the lower bound of 3

10n to obtain a Ω time
complexity on the worst-case but we won’t do that here.
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Theorem 4.5.1. The recurrence relation:

T (n) ≤ T (0.7n) + T (0.2n) + f(n) with f(n) = Θ(n)

satisfies T (n) = O(n).

Proof. The proof is by strong induction.

Two things to note first:

• Since f(n) = Θ(n), we know there is some C0 and n0 such that if n ≥ n0

that f(n) ≤ C0n.

• For each n with n ≤ 5n0 the time T (n) is a fixed constant. Define:

M = max

{
T (n)

n

∣∣∣ 1 ≤ n ≤ 5n0

}
Then for all n ≤ 5n0 we have T (n)/n ≤M and so T (n) ≤Mn.

We claim that for all n ≥ n0 we have T (n) ≤ C1n where C1 = max {10C0,M}.
Base Cases: The base cases cover all of n = n0, ..., 5n0. These are clear because
for n ≤ 5n0 we know T (n) ≤Mn ≤ C1n.

Inductive Step: The inductive step applies to n = 5n0 onwards. For n ≥ 5n0 we
assume that T (k) ≤ C1k for all n0 ≤ k < n and we’ll prove that T (n) ≤ C1n.

Observe that n0 = 0.2(5n0) ≤ 0.2n < n so the induction hypothesis applies to
0.2n and so T (0.2n) ≤ C1(0.2n). Likewise T (0.7n) ≤ C1(0.7n).

From here we get:

T (n) ≤ T (0.7n) + T (0.2n) + f(n)

≤ C1(0.7n) + C1(0.2n) + C0n

≤ 0.9C1n + C0n

≤ 0.9C1n + 0.1C1n

≤ C1n

This finishes the induction step.
QED
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5 QuickSort-Related Note

Recall that the time complexity of QuickSort was challenging because the best-
case is achieved by somehow choosing the pivot value such that the two sublists
are of equal size. However this involves choosing the median at each step and
this is a challenging addition to the code. In response the typical approach is to
select the pivot value randomly which gives rise to O(n lg n) average-case time
complexity.

Another choice is to use our new median-of-medians approach to select the pivot
value. In this case each time the list gets split we can guarantee that one side
is at least 3/10 the size of the original list and the other side is at most 7/10
the size of the original list.

The worst-case then arises when we get exactly the 30/70 split each time. The
resulting recurrence relation is then:

T (n) = T

(
3

10
n

)
+ T

(
7

10
n

)
+ Θ(n)

This cannot be solved by the Master Theorem but the Akra-Bazzi method yields
a solution of Θ(n lg n).

As theoretically interesting as this is, for what it’s worth the time overhead
hidden in the repeated application of the median-of-medians approach makes
this approach not useful in practice.

15



6 Thoughts, Problems, Ideas:

1. If we used a max heap instead of a min heap to find the kth order statistic
and assuming we could build the max heap in O(n) time, what would the
O time complexity of extracting the kth smallest element be?

2. Assume k is given. Modify BubbleSort so that after i iterations the first
i elements are correctly positioned and so that it stops when exactly the
first k elements are correctly positioned.

3. Given the list of 45 distinct elements:

3, 43, 29, 41, 32, 59, 85, 7, 60, 4, 31, 11, 20, 8, 80,
66, 22, 50, 16, 90, 26, 79, 2, 96, 6, 54, 81, 93, 53, 99,
61, 36, 62, 14, 40, 17, 30, 95, 34, 74, 5, 98, 64, 72, 87

(a) Separate the list into columns containing five elements each and sort
each column.

(b) Identify the median of medians.

(c) Draw a table identifying the values guaranteed to be less than or
equal to the MOM

(d) Draw a table identifying the values guaranteed to be greater than or
equal to the MOM

4. In determining the median of medians of a list containing n distinct el-
ements suppose n is an even multiple of 5. Consequently the median of
medians will not actually be an element in the list so instead we choose
the “lower median” which is the largest value below the median. Show
that the MOM is still greater than or equal to 3

10n elements in the original
list but the less than or equal to bound is slightly better.

5. In determining the median of medians of a list containing n distinct ele-
ments suppose n is an even multiple of 5 plus 1. We group the elements
into an odd number of groups of five elements and a single group of one
element and proceed as before. Show that the MOM is still greater than
or equal to 3

10n elements.

6. In the “General Argument, Nice Case” for the median of medians we
assumed n to be an odd multiple of 5 and obtained 3

10n ≤ f(n) ≤ 7
10n.

Calculate the bounds by modifying the argument for the case in we choose
an odd multiple of 7 instead.
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7 Python Test and Output - Näıve

Code:

import random

def kthorder(A,k):

n = len(A)

mini = A[0]

maxi = A[0]

for i in range(0,n):

if A[i] < mini:

mini = A[i]

if A[i] > maxi:

maxi = A[i]

kth = mini

print(’Minimum: ’ + str(kth))

for i in range(1,k):

nextsmallest = maxi

for i in range(0,n):

if (A[i] < nextsmallest) and (A[i] > kth):

nextsmallest = A[i]

kth = nextsmallest

print(’Next Smallest: ’ + str(kth))

return(kth)

A = []

while len(A) < 20:

r = random.randint (0 ,100)

if r not in A:

A.append(r)

print(A)

print(’Final Answer: ’ + str(kthorder(A,5)))

Output:

[67, 84, 27, 56, 82, 57, 15, 13, 66, 41, 30, 97, 52, 99, 87, 47, 45, 20, 53, 64]

Minimum: 13

Next Smallest: 15

Next Smallest: 20

Next Smallest: 27

Next Smallest: 30

Final Answer: 30
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8 Python Test and Output - Median of Medians

Code Comment:
The process of repeatedly partitioning a given list alters that list and this is
reflected in the fact that the functions take the array argument by reference
(the default in Python).

Observe however that the Median of Median function creates a new list (the list
of medians of groups of mostly five) on which the process is recursively called.
When creating that new list, mom needs to alter the working list by sorting in
groups, hence it makes a copy using AA = A[:], and then works on AA.

Consequently it may be helpful to keep in mind that there are several arrays
being managed, each of them by reference.

Code Part 1:

import random

import math

def selectkth(A,l,r,kwish):

# Find the pseudomedian.

pmed = mom(A[l:r+1])

# Find the index of the pseudomedian

pmedi = 0

while A[pmedi] != pmed:

pmedi = pmedi + 1

# Swap that entry with the final entry.

A[r],A[pmedi] = A[pmedi],A[r]

# Partition on the final entry.

pivotindex = partition(A,l,r)

if kwish < pivotindex +1:

return(selectkth(A,l,pivotindex -1,kwish))

elif kwish > pivotindex +1:

return(selectkth(A,pivotindex +1,r,kwish))

else:

return(A[pivotindex ])

def partition(A,l,r):

pivot = A[r]

t = l

for i in range(l,r):

if A[i] <= pivot:

A[t],A[i] = A[i],A[t]

t = t + 1

temp = A[t]

A[t] = A[r]

A[r] = temp

18



return t
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Code Part 2:

def mom(A):

# Make a copy because we’re going to mess it up doing our grouped sorting.

AA = A[:]

n = len(AA)

mlist = []

for i in range(0,int(math.ceil(float(n)/5))):

Li = 5*i

Ri = Li + 5

if Ri > n-1:

Ri = n-1

AA[Li:Ri] = sorted(AA[Li:Ri])

mlist.append(AA[Li+(Ri-Li -1)//2])

if len(mlist )==1:

return mlist [0]

s = selectkth(mlist ,0,len(mlist)-1,(len(mlist )+1)//2)

return(s)

LIST = []

while len(LIST) < 20:

r = random.randint (0 ,100)

if r not in LIST:

LIST.append(r)

print(’Array: ’+str(LIST))

kwish = random.randint(1,len(LIST))

kth = selectkth(LIST ,0,len(LIST)-1,kwish)

print ("I’m looking for rank: " + str(kwish ))

print(’It is: ’ + str(kth))

print(’Here is the Python sorted array for checking:’)

LIST.sort()

print(LIST)

if LIST[kwish -1] == kth:

print(’Success!’)
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Output:

Array: [97, 22, 52, 92, 34, 54, 2, 30, 3, 43, 13, 86, 28, 16, 33, 51, 1, 0, 32, 41]

I’m looking for rank: 12

It is: 34

Here is the Python sorted array for checking:

[0, 1, 2, 3, 13, 16, 22, 28, 30, 32, 33, 34, 41, 43, 51, 52, 54, 86, 92, 97]

Success!

Output:

Array: [58, 77, 27, 41, 92, 19, 44, 7, 65, 31, 85, 84, 57, 94, 81, 71, 20, 82, 55, 5]

I’m looking for rank: 3

It is: 19

Here is the Python sorted array for checking:

[5, 7, 19, 20, 27, 31, 41, 44, 55, 57, 58, 65, 71, 77, 81, 82, 84, 85, 92, 94]

Success!

Output:

Array: [48, 11, 63, 59, 21, 41, 72, 43, 61, 74, 34, 9, 47, 100, 73, 38, 28, 87, 42, 89]

I’m looking for rank: 18

It is: 87

Here is the Python sorted array for checking:

[9, 11, 21, 28, 34, 38, 41, 42, 43, 47, 48, 59, 61, 63, 72, 73, 74, 87, 89, 100]

Success!
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