
CMSC 351: Limitations on Comparisons

Justin Wyss-Gallifent

October 16, 2023

1 Introduction to Decision Trees 2
2 Decisions . 2
3 Decision Tree for An Algorithm 4
4 Analysis of Comparison-Based Sorting 6
5 Thoughts, Problems, Ideas . 8

1

1 Introduction to Decision Trees

Note that the fastest sorting algorithms we have seen having a worst-case time
complexity T (n) = O(n lg n). We might ask if there is some sorting algorithm
which has a smaller worst-case time complexity.

Before answering this question let’s take a second to observe that all the sorting
algorithms we’ve looked at so far (BubbleSort, SelectSort, InsertSort, HeapSort,
MergeSort, and QuickSort) are all comparison-based. What this means is that
they all work by comparing pairs of numbers repeatedly in various ways. This
seems like an obvious necessity because we’re trying to sort and sorting is based
on some sort of comparison.

Before we check out some non-comparison based sorting algorithms let’s take
an abstract look at these sorting algorithms. What we mean by that is - let’s
look at them as a whole, rather than individually.

2 Decisions

Every comparison-based sort algorithm involves a number of comparisons as it
manages the data. Most of those comparisons lead to decisions such as “If
X > Y do this, otherwise do that”. There always a minimum number of
decisions that the algorithm must make. Consider these examples of lists and
sorting them.

Example 2.1. Suppose a list is [X,Y] and it needs to be sorted. We’ll
implement ImmortalSort. Only one decision needs to be made:

Is X < Y ?

Yes: [X,Y]

No: [Y,X]

The answer to this question is sufficient to sort the data and this question
is absolutely necessary.

2

Example 2.2. Suppose a list is [X,Y, Z] and it needs to be sorted. We’ll
implement ImmortalSort. Several decisions need to be made. Let’s think
them out in a nested manner:

Is X < Y ?

Yes: Is Y < Z ?

Yes: [X,Y, Z]

No: Is Z < X ?

Yes: [Z,X, Y]

No: [X,Z, Y]

No: Is X < Z ?

Yes: [Y,X,Z]

No: Is Y < Z ?

Yes: [Y,Z,X]

No: [Z, Y,X]

Observe that at different junctions we need to think differently. For example
if X < Y and Y < Z then we’re done at [X,Y, Z] but if X < Y and Y 6< Z
then we could have either [Z,X, Y] or [X,Z, Y] and we need another decision.

Observe that this series of decisions forms a full binary tree (every non-leaf
node has exactly two children):

Is X < Y ?

Is Y < Z ?

[X,Y, Z] Is Z < X ?

[Z,X, Y] [X,Z, Y]

Is X < Z ?

[Y,X,Z] Is Y < Z ?

[Y,Z,X] [Z, Y,X]

Y

Y N

Y N

N

Y N

Y N

This series of decisions is not the only way we could sort the data. We could
have started with a different initial question, for example.

3

3 Decision Tree for An Algorithm

Each and every comparison-based sorting algorithm must make a series of deci-
sions as it sorts the data and they might be different from method to method.

The decision tree for a comparison-based sort algorithm is then the full binary
tree which displays all the decision branches which arise from the algorithm’s
comparisons.

Consider BubbleSort. This implementation is specifically written so that all
comparisons are <=.

for i = 0 to n-1

for j = 0 to n-i-2

if A[j] <= A[j+1]

nothing

else

swap A[j] and A[j+1]

end

end

end

Let’s see how this works on a list of length 3. Before proceeding observe that
with a list of length 3, BubbleSort will check...

• Is A[0] < A[1]? Swap if false.

• Is A[1] < A[2]? Swap if false.

• Is A[0] < A[1] again? Swap if false.

This implementation of BubbleSort may make useless comparisons and we
should not count those as decisions. We’ll note as we go through.

4

Assume the original list is A = [X,Y, Z] unsorted. There are six possibilities:

1. Starting with A = [X,Y, Z], if X < Y < Z:
Alg Comparison List Comparison Result A is now
A[0] < A[1] X < Y True [X,Y, Z]
A[1] < A[2] Y < Z True [X,Y, Z]
A[0] < A[1] X < Y Previously True [X,Y, Z]

2. Starting with A = [X,Y, Z], if X < Z < Y :
Alg Comparison List Comparison Result A is now
A[0] < A[1] X < Y True [X,Y, Z]
A[1] < A[2] Y < Z False so Swap [X,Z, Y]
A[0] < A[1] X < Z True [X,Z, Y]

3. Starting with A = [X,Y, Z], if Z < X < Y :
Alg Comparison List Comparison Result A is now
A[0] < A[1] X < Y True [X,Y, Z]
A[1] < A[2] Y < Z False so Swap [X,Z, Y]
A[0] < A[1] X < Z False so Swap [Z,X, Y]

4. Starting with A = [X,Y, Z], if Y < X < Z:
Alg Comparison List Comparison Result A is now
A[0] < A[1] X < Y False so Swap [Y,X,Z]
A[1] < A[2] X < Z True [Y,X,Z]
A[0] < A[1] Y < X Reflexively True [Y,X,Z]

5. Starting with A = [X,Y, Z], if Y < Z < X:
Alg Comparison List Comparison Result A is now
A[0] < A[1] X < Y False so Swap [Y,X,Z]
A[1] < A[2] X < Z False so Swap [Y,Z,X]
A[0] < A[1] Y < Z True [Y,Z,X]

6. Starting with A = [X,Y, Z], if Z < Y < X:
Alg Comparison List Comparison Result A is now
A[0] < A[1] X < Y False so Swap [Y,X,Z]
A[1] < A[2] X < Z False so Swap [Y,Z,X]
A[0] < A[1] Y < Z False so Swap [Z, Y,X]

Here is the corresponding tree:

Is X < Y ?

Is Y < Z ?

[X,Y, Z] Is X < Z ?

[X,Z, Y] [Z,X, Y]

Is X < Z

[Y,X,Z] Is Y < Z ?

[Y, Z,X] [Z, Y,X]

Y

Y N

Y N

N

Y N

Y N

5

4 Analysis of Comparison-Based Sorting

We have the following interesting theorem. We really only need the Ω part here
but the whole thing is interesting:

Theorem 4.0.1. We have Ω(lg(n!)) = Ω(n lg n) and O(lg(n!)) = O(n lg(n))
and consequently Θ(lg(n!)) = Θ(n lg n!).

Proof. We do this in steps:

(a) Suppose that f(n) = Ω(lg(n!)). We claim that f(n) = Ω(n lg n).

Observe that:

lg(n!) = lg(n) + lg(n− 1) + ... + lg(2) + lg(1)

= [lg(n− 0) + lg(n− 1) + ... + lg(n− bn/2c)] + [the rest]

≥ lg(n− 0) + lg(n− 1) + ... + lg(n− bn/2c)
≥ lg(n/2) + lg(n/2) + ... + lg(n/2)︸ ︷︷ ︸

1 + bn/2c terms

≥ (1 + bn/2c)(lg n− lg 2)

≥ 1

2
n(lg n− 1)

≥ 1

4
n lg n If n ≥ 4

Consequently if f(n) ≥ B lg(n!) then f(n) ≥ 1
4Bn lg n and the result follows.

(b) Suppose that f(n) = Ω(n lg n). We claim that f(n) = Ω(n!).

Obseve that:

lg(n!) = lg(n)+lg(n−1)+...+lg(2)+lg(1) ≤ lg n+lg n+...+lg n+lg n = n lg n

Consequently if f(n) ≥ Bn lg n then f(n) ≥ B lg(n!) and the result follows.

(c) Suppose that f(n) = O(lg(n!)). We claim that f(n) = O(n lg n).

Using the calculation from (b) we see that if f(n) ≤ C lg(n!) then f(n) ≤
Cn lg n and the result follows.

(d) Suppose that f(n) = O(n lg n). We claim that f(n) = O(n!).

Using the calculation from (a) we see that if f(n) ≤ Cn lg n then f(n) ≤
4 lg(n!) and the result follows.

QED

Let’s look now and how this relates to decision trees. First we have:

Theorem 4.0.2. Any comparison sort requires, in the worst-case, Ω(n lg n)
(comparison-based) decisions.

6

Proof. A comparison-based algorithm needs to decide between n! possible per-
mutations of the list and each permutation will be a leaf in the decision tree so
the number of leaves must be n!.

In general if h is the height of a binary tree then the number of leaves is less
than or equal to 2h (which would be a perfect binary tree) and so we must have:

Leaves = n! ≤ 2h

And so:
h ≥ lg(n!)

Let d be the number of decisions necessary in the worst case. In a worst-case
scenario we follow the tree as far down as possible, thus d = h and so:

d ≥ lg(n!)

Thus by the lemma d = Ω(n lg n).

QED

Corollary 4.0.1. Any comparison sort has worst-case time complexity Ω(n lg n).

Proof. Each (comparison-based) decision takes constant time and the result
follows immediately. QED

Consider what this is saying more specifically. We know that our various
(comparison-based) sorting algorithms have best- and worst-cases. Often these
are the same, like Bubble Sort (Θ(n2)) and Merge Sort (Θ(n lg n)), and some-
times they are not, like Insertion Sort (best-case Θ(n) and worst-case Θ(n2))
and Quick Sort (best-case Θ(n lg n) and worst-case Θ(n2)).

When we think of worst-case we think of “one or more (annoying) lists”. So for
example when we say Merge Sort is worst-case Θ(n lg n) we are observing that
there are some n0, B such that for each n ≥ n0 there are one or more (annoying)
lists which take time at least Bn lg n.

What this theorem is saying is that we can never do better in the worst-case,
meaning that if our sorting algorithm is comparison based then there are some
n0, B such that for each n ≥ n0 there are one or more (annoying) lists which
will take time at least Bn lg n.

7

5 Thoughts, Problems, Ideas

1. Consider the following modification of BubbleSort:

for i = 0 to n-1

for j = n-2 down to i

if A[j] <= A[j+1]

nothing

else

swap A[j] and A[j+1]

end

end

end

Write down the decision tree for this algorithm as applied to the set
{X,Y, Z}.

2. Consider the following pseudocode for InsertSort:

for i = 0 to n-1

key = A[i]

j = i-1

while j >= 0 and key < A[j]

A[j+1] = A[j]

j = j - 1

end

A[j+1] = key

end

Write down the decision tree for this algorithm as applied to the set
{X,Y, Z}.

3. Consider the following pseudocode for SelectionSort:

for i = 0 to n-2

minindex = i

for j = i+1 to n-1

if A[j] < A[minindex]

minindex = j

end

end

A[i] <-> A[minindex]

end

Write down the decision tree for this algorithm as applied to the set
{X,Y, Z}.

8

	Introduction to Decision Trees
	Decisions
	Decision Tree for An Algorithm
	Analysis of Comparison-Based Sorting
	Thoughts, Problems, Ideas

