
CMSC 351: Maximum Contiguous Sum

Justin Wyss-Gallifent

February 5, 2024

1 Introduction . 2
1.1 Why it’s Interesting . 2

2 Brute Force Method . 3
2.1 Introduction . 3
2.2 Pseudocode with Time Complexity Notes 3

3 Divide-and-Conquer . 5
3.1 Introduction . 5
3.2 Pseudocode with Time Complexity Notes 6
3.3 Straddling Sum Example 8

4 Kadane’s Algorithm . 9
4.1 Introduction . 9
4.2 Mathematics . 9
4.3 Pseudocode with Time Complexity Notes 10
4.4 Example Walk-Through 10

5 Comment . 10
6 Thoughts, Problems, Ideas . 11
7 Python Code with Output . 13

7.1 Brute Force . 13
7.2 Näıve Method . 15
7.3 Divide-and-Conquer . 17
7.4 Kadane’s Algorithm . 19

1

1 Introduction

Given a list of integers find the contiguous sublist with maximum sum and
return that maximum sum.

Example 1.1. For example in the list given here:

[-9, 3, 1, 1, 4, -2, -8]

There are many contiguous sublists each with a sum, for example:

• [-9,3,1] has sum −5

• [1,1,4,-2] has sum 4

• ...and so on...

Out of all of these the maximum sum is 9 arising from the sublist [3,1,1,4].

Two important notes:

• The contiguous sublist must be nonempty, meaning we can’t take a subliset
of length 0.

• The maximum contiguous sum may be negative in the case that the list
contains only negative numbers.

1.1 Why it’s Interesting

Beyond any real-world applications solving this problem is a great approach to
many of the various approaches we’ll be seeing through the course, and so doing
it early is like putting out a little taste of a few things.

One real-world application would be if a list A contains the daily increase and
decrease information for a stock and we wished to find the set of days over which
the stock experienced the largest net growth. In the introductory example if
each entry contains the profit (or loss) correspnding to a day of the week then
we can say that the period of maximum profit was four days long and yielded a
profit of 9.

2

2 Brute Force Method

2.1 Introduction

We can do this via brute force. We simply examine all sums starting at all
indices and take the maximum.

2.2 Pseudocode with Time Complexity Notes

Here is our pseudocode with detailed time assignments. As we have commented
on before we really don’t need all these but we’re keeping them here for practice:

\\ PRE: A is a list of length n.

max = A[0] c1
for i = 0 to n-1 n times

sum = 0 c1
for j = i to n-1 n− 1− i + 1 times

sum = sum + A[j] c1
if sum > max

c2max = sum

end

end

end

\\ POST: max is the maximum sum.

The total time complexity can then be calculated as a nested sum:

3

T (n) = c1 +

n−1∑
i=0

c1 +

n−1∑
j=i

(c1 + c2)

= c1 +

n−1∑
i=0

c1 + (c1 + c2)

n−1∑
j=i

1

= c1 +

n−1∑
i=0

[c1 + (c1 + c2)(n− 1− i + 1)]

= c1 +

n−1∑
i=0

[c1 + (c1 + c2)n]−
n−1∑
i=0

(c1 + c2)i

= c1 + [c1 + (c1 + c2)n]

n−1∑
i=0

1− (c1 + c2)

n−1∑
i=0

i

= c1 + [c1 + (c1 + c2)n] (n)− (c1 + c2)

(
(n− 1)(n)

2

)
= c1 + c1n + (c1 + c2)n2 − 1

2
(c1 + c2)n2 +

1

2
(c1 + c2)n

=
1

2
(c1 + c2)n2 +

1

2
(3c1 + c2)n + c1

= Θ(n2)

This is perhaps the default go-to method because it’s very easy to understand.
However Θ(n2) time is less than ideal. Of course for small n it’s fine, and
therefore arguably useful, however.

Using a similar argument to extreme brute force we have best- and average-case
time complexity also Θ(n2).

4

3 Divide-and-Conquer

3.1 Introduction

Interestingly we can apply a divide-and-conquer approach using a recursive al-
gorithm. Basically we split the list in half and then do three things: We find
the MCS on the left side (via a recursive call), on the right side (via a recursive
call), and the one that straddles the middle (not a recursive call). The bottom
of the recursion occurs when the list is length 1.

The MCS straddling the middle is calculated by setting C = b(L + R)/2c where
L and R are the left and right indices of the (sub)list being managed and then
splitting the list in half, the left half being A[0], ... , A[C] and the right half
being A[C + 1],...,A[n− 1] the then taking the MCS which includes both A[C]
and A[C + 1] (and perhaps more to the left and right).

Graphically:

• The two recursive MCS calls look like:

MCS Recursive MCS Recursive

• And the straddling MCS looks like:

MCS anchored right MCS anchored left

Add to yield straddling MCS

We then take the maximum of these three to get the overall maximum.

5

3.2 Pseudocode with Time Complexity Notes

For the time complexity we’ll drop all the constant times that we safely can.
We keep the c for the return because it’s the only thing in the conditional body
and the c in the iteration bodies. While it’s true that these might really take
different amounts of time because they are both constant this does not affect
the overall time complexity.

function mcs(A,L,R)

if L == R

return(A[L]) c
else

C = (L+R) // 2

Lmax = mcs(A,L,C)

Rmax = mcs(A,C+1,R)

\\ Calculate the straddle max

Lhmax = -infinity

Lhsum = 0

for i = C downto L C − L + 1 times
Lhsum = Lhsum + A[i]

c
if Lhsum > Lhmax

Lhmax = Lhsum

end

end

Rhmax = -infinity

Rhsum = 0

for i = C+1 to R R− (C + 1) + 1 = R− C times
Rhsum = Rhsum + A[i]

c
if Rhsum > Rhmax:

Rhmax = Rhsum

end

end

Smax = Lhmax + Rhmax

\\ Return the overall max

return(max([Lmax,Rmax,Smax]))

end

end

result = mcs(A,0,len(A)-1)

6

In what follows we’re glossing over various floor and ceiling functions which occur
during the division process. This glossing over is fairly common in algorithm
analysis and in general has no impact on the result in any meaningful complexity
way.

Observe that the body of the else statement executes C − L + 1 + R − C =
R − L + 1 times and the body of the if statement executes 1 = R − L + 1
times too. Thus we can safely say that the if statement takes a total time of
(R − L + 1)c which is equal to c multiplied by the length of the sublist being
processed.

At recursion depth 0 (the initial call) there is 20 = 1 list of length n so the time
required is cn.

At recursion depth 1 there are 21 = 2 lists of length n/21 so the time required
is 2(n/21)c = cn.

At recursion depth 2 there are 22 = 4 lists of length n/22 so the time required
is 4(n/22)c = cn.

This pattern continues such that at every recursion depth the time required is
nc so the critical question is - how deep does the recursion go?

Well, this continues until the recursion length of the lists are 1. If k is the
maximum recursion depth then this occurs when n/2k = 1 or k = lg n. Thus
we have recursion depths 0 through lg 2 and the total time is:

cn + cn + ... + cn︸ ︷︷ ︸
1 + lgn of these

= c(1 + n lg n) = Θ(n lg n)

Alternately this may be approached using the Master Theorem (we’ll see later).
If each call requires time T (n) satisfying:

T (n) = 2T (n/2) + Θ(n)

where the O(n) arises when calculating the maximum contiguous sublist crosses
the middle. The Master Theorem then tell us that T (n) = O(n log n).

7

3.3 Straddling Sum Example

To clarify the straddling sum consider the list [4,−2, 5, 1, 2, 3,−1] with l = 0
and r = 6. We have c = (6 + 0)/2 = 3 and so we calculate the left-hand max
anchored at index c = 3:

4 -2 5 1 2 3 -1
1 Lhsum = 1

5 1 Lhsum = 6
-2 5 1 Lhsum = 4

4 -2 5 1 Lhsum = 8

Thus we have Lhmax = 8.

And the right-hand max anchored at index c + 1 = 5:

4 -2 5 1 2 3 -1
2 Rhsum = 2
2 3 Rhsum = 5
2 3 -1 Rhsum = 4

Thus we have Lhmax = 5.

In total then smax = 8 + 5 = 13, the total max straddling the center.

Note 3.3.1. The is the first case we’ve seen where it’s evident why divide-and-
conquer confers an advantage with regards to time complexity.

It’s extremely common that divide-and-conquer leads to the introduction of
a logarithmic factor in the time complexity and that this logarithmic factor
replaces something larger.

8

4 Kadane’s Algorithm

4.1 Introduction

Kadane’s Algorithm is a sneaky way of solving the problem in O(n). The basic
premise is based on the idea of dynamic programming.

In dynamic programming the idea is to use previous knowledge as much as
possible when iterating through a process.

4.2 Mathematics

Theorem 4.2.1. Define Mi as the maximum contiguous sum ending at and
including index i for 0 ≤ i ≤ n − 1. Then we have M0 = A[0] and Mi =
max(Mi−1 + A[i], A[i]).

Proof. It’s clear that M0 = A[0] since A[0] is the only contiguous sum ending
at index 0.

Consider Mi for some 1 ≤ i ≤ n− 1.

Denote by Ci the set of contiguous sums ending at index i and denote by Ci−1

the set of contiguous sums ending at index i− 1.

Then we have:

Ci = {x + A[i] |x ∈ Ci−1} ∪ {A[i]}
Mi = max(Ci) = max ({x + A[i] |x ∈ Ci−1} ∪ {A[i]})

= max ({x + A[i] |x ∈ Ci−1} , A[i])

= max (Mi−1 + A[i], A[i])

QED

What this means is that we can progress through the list, calculating the max-
imum contiguous sum ending at and including index i = 1, .., n − 1 using the
previous maximum contiguous sum ending at and including index i− 1.

More programatically: We start by setting mcs=A[0]. Well then go through
the list from i=0,...,n-1. At each step we take the maximum of mcs and
mcs+A[i]. We compare this with an ongoing overall maximum and keep track
of the largest of these.

9

4.3 Pseudocode with Time Complexity Notes

Here is the pseudocode:

\\ PRE: A is a list of length n.

maxoverall = A[0]

maxendingati = A[0]

for i = 1 to n-1

maxendingati = max(maxendingati+A[i],A[i])

maxoverall = max(maxoverall,maxendingati)

end

\\ POST: maxoverall is the maximum contiguous sum.

Note that the use of the max commands can be replaced by conditionals. We’re
just being compact here.

The single iteration of the loop makes it clear that the time complexity is Θ(n).

Note 4.3.1. Worth noting is that it’s not uncommon to have algorithms in
which there is a O(n) solution which requires some rather ingenuous consider-
ation of the solution.

4.4 Example Walk-Through

Consider the list:

[2, 3,−4, 5, 1, 2,−8, 3]

I’ll use M to indicate the maximum overall contiguous sum and Mi to indicate
the maximum contiguous sum ending at and including index i.

We initiate M = 2 and Mi = 2.

Then we iterate:

⇒ When i = 1 we get Mi = max(2 + 3, 3) = 5 and M = max(2, 5) = 5.
⇒ When i = 2 we get Mi = max(5− 4,−4) = 1 and M = max(5, 1) = 5.
⇒ When i = 3 we get Mi = max(1 + 5, 5) = 6 and M = max(5, 6) = 6.
⇒ When i = 4 we get Mi = max(6 + 1, 1) = 7 and M = max(6, 7) = 7.
⇒ When i = 5 we get Mi = max(7 + 2, 2) = 9 and M = max(7, 9) = 9.
⇒ When i = 6 we get Mi = max(9− 8,−8) = 1 and M = max(9, 1) = 9.
⇒ When i = 7 we get Mi = max(1 + 3, 3) = 4 and M = max(9, 4) = 9.

Thus the maximum contiguous sum is 9.

5 Comment

It’s worth noting that even though Kadane’s Algorithm is fastest it is arguably
not the most clear.

10

6 Thoughts, Problems, Ideas

1. Fill in the details of the extreme brute force time complexity calculation
for the case where all the constants are 1:

T (n) = 1 +

n−1∑
i=0

n−1∑
j=i

[
1 +

[
j∑

k=i

1

]
+ 1

]
= (fill in!) = Θ(n3)

2. Fill in the details of the näıve method time complexity calculation for the
case where all the constants are 1:

T (n) = 1 +
n−1∑
i=0

1 +

n−1∑
j=i

(1 + 1)

 = (fill in!) = Θ(n2)

3. Modify the pseudocode for each of the four variations so that an additional
variable maxlen is passed and so that the sublist whose sum is returned
may not have a length longer than this.

4. In the divide-and-conquer algorithm we divide the list in half in the line
c=(l+r)//2. What effect does it have if this line is replaced by, for exam-
ple, c=(l+r)//3? Explain

5. Modify the pseudocode for Kadane’s Algorithm so that it finds the max-
imum nonnegative sum. If every element in the list is negative return
false instead of the sum.

6. Modify the pseudocode for Kadane’s Algorithm so that it returns the
length of the sublist which provides the maximum contiguous sum.

7. What is a useful loop invariant for Kadane’s Algorithm? Prove the re-
quirement of the Loop Invariant Theorem for this loop invariant.

8. Modify the pseudocode for the näıve method so that it finds the maximum
sum of a rectangular subarray within an n×m array. Assuming that all
constant time complexities take time 1 calculate the O time complexity
of your pseudocode.

9. Using the same approach as divide-and-conquer write an algorithm which
returns the length of the longest string of 1s in list of 0s and 1s.

10. Write a clear explanation of how the divide-and-conquer approach could
be modified to find the maximum sum of a rectangular subarray within
an n×m array. Pseudocode isn’t necessary.

11. What are your thoughts on modifying Kadane’s Algorithm to find to find
the maximum sum of a rectangular subarray within an n×m array?

12. In Kadane’s Algorithm consider the line:

maxoverall=max(maxoverall,maxendingati)

11

In a worst-case scenario what is the maximum number of times this will
change the value of maxoverall? Explain.

13. Suppose your list A has the property that the maximum contiguous sum
should only examine sublists of length 5 or less. Modify each of the algo-
rithms in order to take this into account.

14. Modify each algorithm so that instead of finding the maximum contiguous
sum a particular value is passed and the algorithm returns True if there
is a contiguous sum equal to that value and False if not.

15. Modify the previous problems algorithm so that it returns the number of
continguous sums which equal that value.

12

7 Python Code with Output

7.1 Brute Force

Code:

import random

A = []

for i in range (0,7):

A.append(random.randint (-10 ,10))

n = len(A)

print(A)

max = A[0]

for i in range(0,n):

for j in range(i,n):

sum = 0

for c in range(i,j+1):

sum = sum + A[c]

if sum > max:

max = sum

print(’Max of ’ + str(A[i:j+1]) + ’: ’ + str(max))

print(’Overall max: ’ + str(max))

13

Ouput:

[-9, 3, 1, 1, 4, -2, -8]

Max of [-9]: -9

Max of [-9, 3]: -6

Max of [-9, 3, 1]: -5

Max of [-9, 3, 1, 1]: -4

Max of [-9, 3, 1, 1, 4]: 0

Max of [-9, 3, 1, 1, 4, -2]: 0

Max of [-9, 3, 1, 1, 4, -2, -8]: 0

Max of [3]: 3

Max of [3, 1]: 4

Max of [3, 1, 1]: 5

Max of [3, 1, 1, 4]: 9

Max of [3, 1, 1, 4, -2]: 9

Max of [3, 1, 1, 4, -2, -8]: 9

Max of [1]: 9

Max of [1, 1]: 9

Max of [1, 1, 4]: 9

Max of [1, 1, 4, -2]: 9

Max of [1, 1, 4, -2, -8]: 9

Max of [1]: 9

Max of [1, 4]: 9

Max of [1, 4, -2]: 9

Max of [1, 4, -2, -8]: 9

Max of [4]: 9

Max of [4, -2]: 9

Max of [4, -2, -8]: 9

Max of [-2]: 9

Max of [-2, -8]: 9

Max of [-8]: 9

Overall max: 9

14

7.2 Näıve Method

Code:

import random

A = []

for i in range (0,7):

A.append(random.randint (-10 ,10))

n = len(A)

print(A)

max = A[0]

for i in range(0,n):

sum = 0

for j in range(i,n):

sum = sum + A[j]

if sum > max:

max = sum

print(’Max of ’ + str(A[i:j+1]) + ’: ’ + str(max))

print(’Overall max: ’ + str(max))

15

Output:

[-2, -1, 6, -1, 6, 3, 2]

Max of [-2]: -2

Max of [-2, -1]: -2

Max of [-2, -1, 6]: 3

Max of [-2, -1, 6, -1]: 3

Max of [-2, -1, 6, -1, 6]: 8

Max of [-2, -1, 6, -1, 6, 3]: 11

Max of [-2, -1, 6, -1, 6, 3, 2]: 13

Max of [-1]: 13

Max of [-1, 6]: 13

Max of [-1, 6, -1]: 13

Max of [-1, 6, -1, 6]: 13

Max of [-1, 6, -1, 6, 3]: 13

Max of [-1, 6, -1, 6, 3, 2]: 15

Max of [6]: 15

Max of [6, -1]: 15

Max of [6, -1, 6]: 15

Max of [6, -1, 6, 3]: 15

Max of [6, -1, 6, 3, 2]: 16

Max of [-1]: 16

Max of [-1, 6]: 16

Max of [-1, 6, 3]: 16

Max of [-1, 6, 3, 2]: 16

Max of [6]: 16

Max of [6, 3]: 16

Max of [6, 3, 2]: 16

Max of [3]: 16

Max of [3, 2]: 16

Max of [2]: 16

Overall max: 16

16

7.3 Divide-and-Conquer

Code:

import random

A = []

for i in range (0 ,10):

A.append(random.randint (-10 ,10))

n = len(A)

print(A)

def mcs(A,l,r,indentlevel):

print(indentlevel*’.’ + ’Finding mcs in A=’+str(A[l:r+1]))

if l == r:

print(indentlevel*’.’ + ’It is ’+str(A[l]))

return(A[l])

else:

c = (l+r) // 2

lhmax = A[c]

lhsum = 0

for i in range(c,l-1,-1):

lhsum = lhsum + A[i]

if lhsum > lhmax:

lhmax = lhsum

rhmax = A[c+1]

rhsum = 0

for i in range(c+1,r+1):

rhsum = rhsum + A[i]

if rhsum > rhmax:

rhmax = rhsum

cmax = lhmax + rhmax

print(indentlevel*’.’ + ’Straddle max is ’+str(cmax))

lmax = mcs(A,l,c,indentlevel +2)

rmax = mcs(A,c+1,r,indentlevel +2)

omax = max([lmax ,rmax ,cmax])

print(indentlevel*’.’ + ’It is ’+str(omax))

return(omax)

print(mcs(A,0,len(A)-1,0))

17

Output:

[-1, 2, 9, -3, 5, -8, 10, -6, 1, 0]

Finding mcs in A=[-1, 2, 9, -3, 5, -8, 10, -6, 1, 0]

.. Finding mcs in A=[-1, 2, 9, -3, 5]

.... Finding mcs in A=[-1, 2, 9]

...... Finding mcs in A=[-1, 2]

........ Finding mcs in A=[-1]

........ It is -1

........ Finding mcs in A=[2]

........ It is 2

...... It is 2

...... Finding mcs in A=[9]

...... It is 9

....It is 11

.... Finding mcs in A=[-3, 5]

...... Finding mcs in A=[-3]

...... It is -3

...... Finding mcs in A=[5]

...... It is 5

....It is 5

..It is 13

.. Finding mcs in A=[-8, 10, -6, 1, 0]

.... Finding mcs in A=[-8, 10, -6]

...... Finding mcs in A=[-8, 10]

........ Finding mcs in A=[-8]

........ It is -8

........ Finding mcs in A=[10]

........ It is 10

...... It is 10

...... Finding mcs in A=[-6]

...... It is -6

....It is 10

.... Finding mcs in A=[1, 0]

...... Finding mcs in A=[1]

...... It is 1

...... Finding mcs in A=[0]

...... It is 0

....It is 1

..It is 10

It is 15

15

18

7.4 Kadane’s Algorithm

Code:

import random

A = []

for i in range (0 ,20):

A.append(random.randint (-10 ,10))

n = len(A)

print(A)

maxoverall = A[0]

maxendingati = A[0]

for i in range(1,n):

maxendingati = max(maxendingati+A[i],A[i])

maxoverall = max(maxoverall ,maxendingati)

print(’Best sum ending with index i=’+str(i)+’ is ’+str(maxoverall))

print(maxoverall)

Output:

[4, -1, 0, 4, -7, 2, -3, -2, 3, 1, 7, 3, -5, 2, -3, 2, 9, -5, 3, -2]

Best sum ending with index i=1 is 4

Best sum ending with index i=2 is 4

Best sum ending with index i=3 is 7

Best sum ending with index i=4 is 7

Best sum ending with index i=5 is 7

Best sum ending with index i=6 is 7

Best sum ending with index i=7 is 7

Best sum ending with index i=8 is 7

Best sum ending with index i=9 is 7

Best sum ending with index i=10 is 11

Best sum ending with index i=11 is 14

Best sum ending with index i=12 is 14

Best sum ending with index i=13 is 14

Best sum ending with index i=14 is 14

Best sum ending with index i=15 is 14

Best sum ending with index i=16 is 19

Best sum ending with index i=17 is 19

Best sum ending with index i=18 is 19

Best sum ending with index i=19 is 19

19

19

	Introduction
	Why it's Interesting

	Brute Force Method
	Introduction
	Pseudocode with Time Complexity Notes

	Divide-and-Conquer
	Introduction
	Pseudocode with Time Complexity Notes
	Straddling Sum Example

	Kadane's Algorithm
	Introduction
	Mathematics
	Pseudocode with Time Complexity Notes
	Example Walk-Through

	Comment
	Thoughts, Problems, Ideas
	Python Code with Output
	Brute Force
	Naïve Method
	Divide-and-Conquer
	Kadane's Algorithm

