CMSC 351: MergeSort

Justin Wyss-Gallifent

October 1, 2024

11 What it Doesl
I2 ll!l&y 'II !&!!lls I

K Pseudocode Time Complexity:|
5 Pseudocode Auxiliary Space|o

B SGabIihy] « .« .« .« o v v oo e e

8 Notesl

1 What it Does

Sorts a list of elements on which there is a total order. Think of integers or real
numbers.

2 How it Works

Merge sort is a divide-and-conquer algorithm whereby the list is subdivided
repeatedly in half. Each half is then divided in half again and so on until each
sublist has size 1 and is obviously sorted. Pairs of sublists are then merged to
preserve the sort.

Here is a visual representation. The red/blue divisions are illustrating how each
(sub)list is divided in half. Any green element or group of elements are sorted.
All the action above the center line is the recursive deconstruction while all the
action below the center line is the re-merging of the sublists.

[7]s[1]o[3[2]5]s]4[9]6]

[7]8]1]o]3] [2]5]s]4]9]6]

[718] [1]o[3] [2]5]8] [4]9]6]

18] Tol1[3] [2[5[3] [4[6
o[1[3]7]8] [2[4]5]6]8]9

lo[1]2]3]4[5]6]7[s]8]9]

3 Pseudocode:

Here is the pseudocode for Merge Sort. It’s not necessary to write two separate
functions but it might help clarify what’s going on.

Here is the MergeSort code.
function MergeSort (arr,start,end)
if start < end
Find the middle.
middle = (start+end) // 2
Apply MergeSort to each half.
MergeSort (arr,start ,middle)
MergeSort (arr ,middle+1, end)
Merge the two halves back on top of arr.
Merge (arr,start ,middle ,middle+1, end)
end if
end function
Here is the Merge function that merges two parts of a list.
function Merge (arr,startl,endl,start2,end2)
temp = array of same size as arr
i = startl; j = start2; k = startl
while i1 <= endl and j <= end2
if arr[i] <= arr[j]

temp [k] = arr[i]; i++; k++
else

temp [k] = arr[jl; j++; k++
end if

end while
while i <= endl

temp [k] = arr[i]; i++; k++;
end while
while j <= end2

temp[k] = arr[jl; j++; k++
end while
Copy temp on top of arr.

for i = startl to end2 inclusive
arr[i] = templ[il
end for

end function

4 Pseudocode Time Complexity:

For a list of length n:

e The MergeSort function does a constant-time operation and then makes
two recursive calls to lists of length essentially 7/2 and then makes a call
to Merge. It does all of this only if the length of the list is more than 1,
so this length 1 would be the base case; If the list is length 1 then it just
runs the conditional check at ©(1).

e The Merge function itself operates on pairs of sublists which add to the
total length n. It runs at ©(n).

It follows that the asymptotic time complexity on an input of size n therefore
satisfies the recurrence relation:

T(n) =2T(n/2)+ f(n) with T'(1) constant and f(n) = O(n)

This recurrence relation can be solved either by digging down, with a recurrence
tree, or with the Master Theorem, resulting in T'(n) = O(nlgn).

Note that this is best, worst, and average-case. This is because MergeSort
breaks down the list and puts it back together no matter what, even if the list
is sorted at the start. Moreover the process of sorting the recursive parts during
the reconstruction process is no quicker whether the parts are sorted or not.

5 Pseudocode Auxiliary Space

One fun fact is that we can analyze the auxiliary space using a recurrence
relation. For a list of length n:

e The MergeSort function requires middle, which is ©(a). It then makes
two recursive calls to lists of length essentially n/2 and then makes a call
to Merge. However the two recursive calls are in series - one after the
other, meaning that any auxiliary space taken by the first call is released
before the second call.

e The Merge function itself requires the creation of temp which has length
n and also a few index counters. This is then ©(n) auxiliary space on its
own.

It follows that the asymptotic space complexity on an input of size n therefore
satisfies the recurrence relation:

S(n) = S(n/2) + f(n) with S(1) constant and f(n) = O(n)

This recurrence relation can be solved either by digging down, with a recurrence
tree, or with the Master Theorem, resulting in S(n) = O(n).

6 Stability

Our MergeSort psuedocode is stable.

7 In-Place

Our MergeSort pseudocode is not in-place.

8 Notes

MergeSort is not interative in any sense which lends itself to an easy analysis of
what any intermediate steps look like.

	What it Does
	How it Works
	Pseudocode:
	Pseudocode Time Complexity:
	Pseudocode Auxiliary Space
	Stability
	In-Place
	Notes

