
CMSC 351: P, NP, Etc. Part 1

Justin Wyss-Gallifent

August 15, 2022

1 Introduction . 2
2 Informalities . 2
3 Decision Problems . 3

3.1 What is a Decision Problem? 3
3.2 Rephrasing as Decision Problems 3
3.3 Proofs and Witnesses . 4

4 Turing Machines . 5
4.1 Basics . 5
4.2 Deterministic . 5
4.3 Non-Deterministic . 5

5 Thoughts, Problems, Ideas . 7

1

1 Introduction

Here we’re going to abstract our knowledge of time complexity to look at classi-
fying problems. In order to do this we need to introduce the concepts of decision
problems, Turing machines, etc.

2 Informalities

A great example to consider is the generalization of Sudoku. Starting with an
n2×n2 grid with some squares filled with values between 1 and n2, is it possible
to complete the grid with numbers between 1 and n2 so that each row and each
column contains exactly one of each and such that each of the n2 subsquares of
size n× n contains exactly one of each?

Example 2.1. Classic Sudoku is 32 × 32 = 9 × 9, the numbers are between 1
and 32 = 9, and there are 32 = 9 subsquares of size 3× 3.

�

Example 2.2. Simple Sudoku is 22 × 22 = 4 × 4, the numbers are between 1
and 22 = 4, and there are 22 = 4 subsquares of size 2× 2.

�

Example 2.3. More complicated is 42×42 = 16×16, the numbers are between
1 and 42 = 16, and there are 42 = 16 subsquares of size 4× 4.

�

If a Sudoko board is partially filled in we can ask whether it can be completely
filled in.

If a suggested solution is given it is easy to check if the solution is valid and this
check can be performed in an amount of time which grows at a polynomial rate
with the size of the board. Can you write an algorithm for this?

However actually coming up with a solution seems to be much harder. It appears
that (although nobody has proven this) that the amount of time grows at an
exponential rate with the size of the board and that nothing is really any better
than actually trying all combinations.

Thus we might informally suggest that checking a given solution is easier than
finding a solution.

2

3 Decision Problems

3.1 What is a Decision Problem?

Definition 3.1.1. A decision problem is a problem which taken an input, for-
mally an instance, and produces either YES or NO.

We’ll often abstractly write Q for a decision problem and I for an instance and
then Q(I) = Y ES or Q(I) = NO depending on whether the result is YES or
NO for that instance.

Example 3.1. Q: Given two real numbers x and y, is the sum greater than
100?
I: x = 50, y = 80 yields Q(I) = Y ES
I: x = 10, y = 10 yields Q(I) = NO

�

Example 3.2. Q: Given a natural number n, does n have nontrivial factors?
I: n = 10 yields Q(I) = Y ES
I: n = 5 yields Q(I) = NO

�

Example 3.3. Q: Given a list of integers A, is it sorted?
I: A = [1, 2, 3] yields Q(I) = Y ES
I: A = [2, 1, 3] yields Q(I) = NO �

Example 3.4. Q: Given a graph G, does it contain a cycle?
�

Example 3.5. Q: Given a set A is there a subset which adds to 0?
I: A = {1, 4,−3, 5,−1} yields Q(I) = Y ES
I: A = {1, 4, 5, 3,−2} yields Q(I) = NO

�

3.2 Rephrasing as Decision Problems

Many types of problems which are not decision problems can be rephrased as
decision problems. The rephrased problem will not be exactly the same but will
carry over the same notion in a computationally equivalent sense.

Example 3.6. Non-decision problem: Find a solution to a partially filled Su-
doku board.

This can be rephrased as:

Q: Given a partially filled Sudoku board, does a solution exist?

Observe that deciding if a solution exists essentially seems to be as difficult as
finding one.

�

3

Example 3.7. Non-decision problem: For a graph G, find the shortest path
between two vertices s and t.

This can be rephrased as:

Q: Given two vertices s and t and a length k, is there a path of length less than
or equal to k between s and t?

Observe that deciding if there is a path of length less than or equal to k essen-
tially seems to be as difficult as finding one.

�

3.3 Proofs and Witnesses

Definition 3.3.1. Given a decision problem and an instance if the answer is
YES then a proof, or witness, or certificate is essentially proof that the answer
is yes.

Informally we’ll use the term invalid witness to refer to something which doesn’t
work.

Example 3.8. Q: Given a set, is there a subset which adds to 0?
I: {1, 4,−3, 5,−1} has {4,−3,−1} as a witness.

�

Note 3.3.1. If we have access to a valid witness for a decision problem and
instance then we can say that the answer is YES. However if we don’t have
access to a witness or if we have an invalid witness then we cannot say that the
answer is no.

Example 3.9. For the decision problem: Given a set, is there a subset which
adds to 0?
For the instance {1, 4,−3, 5,−1} if we present {1, 4} then this is an invalid
witness and we know nothing.

�

4

4 Turing Machines

4.1 Basics

Definition 4.1.1. A Turing machine consists of:

• An infinitely long (in both directions) tape divided into cells. Each cell is
either blank or contains one of a finite set of symbols.

• A read-write head which points to one cell at a time. It can read the cell
or write to it, or it can move one cell left or right.

• A current state taken from a finite set of possible states and which is
initialized at the start.

• A finite table of instructions.

A Turing machine is given a starting state and then it proceeds to run according
to its state, its set of rules, and the tape. It may then stop operating at some
ending state.

While this may seem particularly simple in reality every single algorithm that
we generally think of and work with can be modeled by a particular Turing
machine.

4.2 Deterministic

Definition 4.2.1. A deterministic Turing machine (DTM) is a Turing machine
which has a single course of action for any combination of it’s internal state state
and the input/memory. In such a case one starting state will result in one ending
state.

Note 4.2.1. All of the thinking we’ve been doing in this class is based around
the idea of a DTM.

4.3 Non-Deterministic

Definition 4.3.1. A non-deterministic Turing machine (NTM) is a Turing
machine which can have more than one course of action for any combination of
its internal state and the input/memory. In such a case one starting state can
(but doesn’t have to) result in many ending states.

Note 4.3.1. Understand that NTM should be treated as a thought experiment
used to study computing rather than a specific machine on which algorithms
are actually run.

Example 4.1. If we are trying to solve the decision problem as to whether there
is a subset of {−1,−2, 3, 4} then a DTM needs to check all possible subsets one
by one whereas a NTM can try them simultaneously.

5

This means it could add all subsets simultanously, or it could compare all subsets
against a different set simultaneously, or whatever. The key point is that these
operations happen simultaneously.

�

Example 4.2. If a DTM is doing a breadth-first search on a graph then at a
given vertex it must check each adjacent vertex one by one in some order. An
NTM can check them all simultaneously and the result is many ending states,
one corresponding to each branch.

�

Example 4.3. If a DTM is trying to factor a number by brute force then it
must try every factor. An NTM can try them all simultaneously and the result
is many ending states, one corresponding to each result.

�

Time complexity can of course then change drastically when we are thinking
about DTMs v NTMs.

Example 4.4. If a problem of size n involves a star graph with n + 1 vertices
(one central vertex connected to n other vertices, none of which are connected
to each other) and each of the n outer vertices require a Θ(1) calculation then
a DTM renders the problem Θ(1 + n) = Θ(n) as it has to check the n vertices
one by one but a NTM renders the problem Θ(1 + 1) = Θ(1) as it can check
them simultaneously by branching.

�

A NDM can obviously emulate a DTM because it can be instructed to simply
follow one course of action. A DTM can to some degree emulate a NDM but
only in a breadth-first sense. It cannot follow all possibilities to all depths
simultaneously.

6

5 Thoughts, Problems, Ideas

1. Prove that if an algorithm has time complexity T (n) = n! then the algo-
rithm does not run in polynomial time.

2. Consider this decison problem:

YES∨NO: Given a set S with n elements, is there a subset which adds
to zero?

For each of the following inputs, first answer YES or NO. If the answer is
YES, give an example of a valid witness and an invalid witness.

(a) S = {5, 1, 8,−2, 10,−2, 100, 7,−2}
(b) S = {−10, 20, 1, 2, 3, 6, 80,−11, 4}
(c) S = {−2,−1, 4}

3. Consider this decison problem:

YES∨NO: Does the integer n ≥ 2 have a factor which is not 1 or itself?

For each of the following inputs, first answer YES or NO. If the answer is
YES, give an example of a valid witness and an invalid witness.

(a) n = 100

(b) n = 97

(c) n = 51

4. Consider this decison problem:

YES∨NO: Does the graph with n vertices labeled 0 through n− 1 and
represented by a given adjacency list have a cycle?

For each of the following inputs, first answer YES or NO. If the answer is
YES, give an example of a valid witness and an invalid witness.

(a) [[1, 3], [0, 2], [1, 3], [0, 2]]

(b) [[1, 2, 3], [0], [0], [0]]

(c) [[1, 2], [0, 3, 4], [0], [1], [1]]

7

	Introduction
	Informalities
	Decision Problems
	What is a Decision Problem?
	Rephrasing as Decision Problems
	Proofs and Witnesses

	Turing Machines
	Basics
	Deterministic
	Non-Deterministic

	Thoughts, Problems, Ideas

