
CMSC 351: P, NP, Etc. Part 2

Justin Wyss-Gallifent

December 2, 2023

1 Polynomial Time . 2
2 P . 3
3 NP . 6

3.1 Definition . 6
3.2 An Algorithm for a Verifier which Proves NP 8

4 P v NP . 9
5 Problem Reduction and Equivalence 10

5.1 Introduction . 10
5.2 Using Explicit Sets . 10
5.3 Decision Problems and Algorithms 12
5.4 Stepping Away from Decision Problems 14
5.5 Some Facts about Polynomial Reducibility 14

6 Thoughts, Problems, Ideas . 15

1

1 Polynomial Time

A reminder:

Definition 1.0.1. An algorithm runs in polynomial time if T (n) = O(nk) for
some k ∈ N where n is the input size.

Example 1.1. MergeSort has T (n) = Θ(n lg n) = O(n2) and hence Merge-
Sort is polynomial time. �

Example 1.2. Generating a list of all permutations of {1, 2, ..., n} has
T (n) = Θ(n!) which is not polynomial time. Why not? Can you prove
this? �

Generally speaking we think of polynomial time as “fast” but depending on the
coefficients, in reality polynomial time can be incredibly slow.

2

2 P

Definition 2.0.1. The set P is the set of all decision problems Q such that
Q ∈ P when there is a DTM polynomial-time algorithm (polynomial in the size
of the instance) such that:

• If Q(I) = Y ES then the algorthm outputs Y ES.

• If Q(I) = NO then the algorithm outputs NO.

Example 2.1. Q: Given a list A, is A sorted?

We can write a polynomial-time algorithm which takes an instance (a list)
A and checks whether each element is greater than or equal to the previous
element and returns Y ES if they all are and NO otherwise.

Thus this decision problem is P .

�

Example 2.2. Q: Given x, y and d, is d = gcd(x, y)?

We can write a polynomial-time algorithm which takes an instance (a triple
x, y, d), calculates the gcd of x and y and compares it to d. If equal it
returns Y ES and otherwise NO.

Thus this decision problem is P .

�

Example 2.3. Q: Given two lists A and B of the same length, do they
contain the same values?

We can write a polynomial-time algorithm which takes an instance (two lists
A and B) sortes them and then compares them element by element. If all
elements are equal, return Y ES, otherwise return NO.

Thus this decision problem is P . �

Example 2.4. Q: Given a graph G on V vertices and two specific vertices
s and t and a distance d, is there a path of length less than or equal to d
from s to t?

We can write a polynomial-time algorithm which takes an instance (the data
G,V, s, t, d), runs the shortest path algorithm using s as the starting vertex
and checks if the distance from s to t is less than d and replies Y ES or NO
accordingly.

Thus this decision problem is P . �

3

Example 2.5. Q: Given a partially filled Sudoku board, is there a solution?

There is no known polynomial-time algorithm which takes an instance (a
partially filled Sudoku board) and replies Y ES or NO accordingly.

Thus it is unknown if this decision problem is P . It is suspected that the
answer is no.

�

Example 2.6. Q: Given a set A is there a subset which adds to 0?

There is no known polynomial-time algorithm which takes an instance (a set
A) and replies Y ES or NO accordingly.

Thus it is unknown if this decision problem is P . It is suspected that the
answer is no.

�

Example 2.7. Q: Given a graph G, does G contain a Hamiltonian cycle?
(This is a cycle which contains each vertex exactly once.)

There is no known polynomial-time algorithm which takes any instance (a
graph G) and replies Y ES or NO accordingly.

Thus it is unknown if this decision problem is P . It is suspected that the
answer is no. �

Example 2.8. Q: Given a program which may or may halt, does it halt?

It has been proven that there is no polynomial-time algorithm which takes
any instance (a program) and replies Y ES or NO accordingly.

Thus this decision problem is not in P . �

4

In many cases if a decision version of an optimization problem is P then the
optimization problem itself can be solved in polynomial time.

Example 2.9. Given a weighted connected graph G and vertices s, t con-
sider the optimization problem of finding the length of the shortest path
from s to t.

A decision version of this is:

Q: Given a weighted connected graph T , vertices s, t, and a value k is there
a path from s to t of length less than or equal to k?

Suppose we have a polnomial-time algorithm pathexists(G,s,t,k) which
answers the decision version in polynomial time. In other words within
polynomial time it returns Y ES if there is a path from s to t of length less
than or equal to k and NO if not.

Since the graph is connected we know there is a path from s to t and the
length of this path could at most be the total sum of all the edge weights.
So what we can do is:

function findshortestpathlength(G,s,t,k)

max = sum of edge weights in G

shortest = max

for i = max down to 0

if pathexists(G,s,t,i) then

shortest = i

end

end

return(shortest)

end

This function will return the length of the shortest path and will do so in
polynomial time on a DTM.

Thus this optimization process can be solved in polynomial time. �

5

3 NP

3.1 Definition

Before talking about NP , here is P again so we can compare:

Definition 3.1.1. The set P is the set of all decision problems Q such that
Q ∈ P when there is a DTM polynomial-time algorithm (polynomial in the size
of the instance) such that:

• If Q(I) = Y ES then the algorthm outputs Y ES.

• If Q(I) = NO then the algorithm outputs NO.

And now NP :

Definition 3.1.2. The set NP is the set of all decision problems Q such that
Q ∈ NP when there is a NTM polynomial-time algorithm (polynomial in the
size of the instance) such that:

• If Q(I) = Y ES then the algorthm outputs Y ES.

• If Q(I) = NO then the algorithm outputs NO.

Now then, let’s stop to point out that this was the original definition of NP but
there’s an equivalent and more modern definition of NP which is based upon
verification of solutions. Here is the simple version:

Definition 3.1.3. The set NP is the set of all decision problems Q such that
Q ∈ NP when there is a DTM polynomial-time algorithm V called a verifier
that verifies an instance and potential witness in polynomial time (polynomial
in the size of the instance and witness). This means for an instance I and
potential witness x that:

• If V (I, x) = Y ES then there is a witness, although it may not necessarily
be x.

• If V (I, x) = NO then x is not a witness.

Note 3.1.1. The idea is that V can use x but doesn’t have to. The key is that
it must run in polynomial time.

Note 3.1.2. A small warning here that neither bullet point is an iff. This
means that if there is a witness we don’t necessarily get Y ES from V and if x
is not a witness we don’t necessarily get NO from V .

This warning is clarified by the following two examples:

Example 3.1. Q: Given a set of n integers is there a subset which adds to
0?

The verifer V (I, x) takes the set and a particular subset. It sums the values
in x and sees if the result is 0 and returns Y ES or NO accordingly. The
following calls yield the following results:

6

We find V ({3, 4, 2,−7}, {3, 4,−7}) = Y ES and we can conclude there is a
witness.

We find V ({3, 4, 2,−7}, {3, 4}) = NO and we can conclude that {3, 4} is not
a witness. This does not mean there isn’t a witness. In this case there is. �

Example 3.2. Q: Given a list of n integers are any of them greater than
100?

The verifier V (I, x) takes the list and a particular element. It checks the
list and sees if there is a value greater than 100 and return Y ES or NO
accordingly. It ignores the particular element. The following calls yield the
following results:

We find V ({1, 5, 103, 10}, 103) = Y ES and we can conclude there is a wit-
ness.

We find V ({1, 5, 103, 10}, 10) = Y ES and we can conclude there is a witness.

We find V ({1, 5, 3, 10}, 10) = NO and we can conclude that 10 is not a
witness. This does not mean there isn’t a witness. In this case there isn’t.
�

Here are some other examples.

Example 3.3. Q: Given a set S of integers can we partition S into two
subsets A and B whose sums are equal?

We can write a polynomial-time verifier which takes an instance (a set S)
and a potential witness (two subsets A and B), sums the elements in A and
B separately, checks if they are equal and replies Y ES or NO accordingly.
This will satisfy the definition.

Thus this decision problem is NP .

Example 3.4. Q: Given a partially-filled sudoku board is there a solution?

We can write a polynomial-time verifer which takes an instance (a partially-
filled sudoku board) and a potential witness (a potential solution) and checks
if the solution works, replying Y ES or NO accordingly. This will satisfy the
definition.

Thus this decision problem is NP . �

Some other problems which can be seen to be NP in a similar way:

Example 3.5. Q: Given a set of n integers, is there a subset which adds to
0? �

7

Example 3.6. Q: Given a graph G does it contain a cycle? �

Note 3.1.3. I read somewhere once that some people believe that we should
just use V P to mean verifiable in polynomial time on a DTM instead of using
NP . That way the machine is always a DTM.

Or even better, SP (for solvable in polynomial time) and V P (verifiable in
polynomial time). But there we go.

3.2 An Algorithm for a Verifier which Proves NP

This is an informal presentation of how we might write a verifier which proves
a decision problem Q is in NP . The following algorithm will need to run in
polynomial time as a function of the sizes of I and x:

function V(I,x)

if we can decide Q(I) without looking at x

decide Q(I)

return YES or NO accordingly

else

if x is a valid witness?

return YES

end if

end if

return NO

Now pretend that all you know is the input and output of the verifier. Observe
that:

• If the verifier returns YES then all you can conclude is that there is a
valid witness. You don’t know if x is valid because you don’t know if the
algorithm decided Q or checked x.

• If the verifier returns NO then all you know is that x is not a valid witness.
You don’t know if there is a valid witness

This algorithm satisfies the definition of a polynomial-time verifier and proves
that Q ∈ NP .

8

4 P v NP

Note 4.0.1. First, observe that P ⊆ NP . To see this, note that if a decision
problem is in P then if we are given an instance and a witness we can just ignore
the witness, run the polynomial-time decider and say Y ES or NO accordingly.

Definition 4.0.1. The P v NP Problem asks whether P = NP or not. In other
words is it the case that when we can verify any potential witness in polynomial
time that we can also solve the decision problem in polynomial time?

This is perhaps the greatest unsolved problem in computer science. There is
overwhelming evidence that P 6= NP in the sense that there are many important
problems for which potential witnesses can be verified in polynomial time but
no polynomial-time solution has been found. However note that this does not
mean that such solutions don’t exist.

9

5 Problem Reduction and Equivalence

5.1 Introduction

This last section looks at what it might mean if solving one decision problem
might be “as easy as” solving another. Before diving into this concept we’ll first
look at a similar idea with sets.

5.2 Using Explicit Sets

First of all observe that a set A can be thought of as a decision problem Q if
we treat the elements in A as instances and say that Q(I) = Y ES if I ∈ A and
Q(I) = NO if I 6∈ A.

Example 5.1. If A = {2, 5, 10} then Q(2) = Y ES and Q(3) = NO.

�

Example 5.2. Let A be the set of integer multiple of 3. Then Q(6) = Y ES
and Q(5) = NO.

�

Example 5.3. Let A be the set of partially filled sudoku boards which are
solvable. Clearly there are some partially filled boards x for which Q(x) =
TRUE and some for which Q(x) = FALSE.

�

Definition 5.2.1. Given sets A and B we say that A is polynomially reducible
to B if there is some function p which can be computed in polynomial time and
such that x ∈ A iff p(x) ∈ B.

Note 5.2.1. The idea here is that making a decision about whether x ∈ A or
not can be, in polynomial time, altered to a question about whether p(x) ∈ B
or not.

Example 5.4. Let A be the set of integer multiples of 2 and let B be the
set of integer multiples of 3.

To prove that A is polynomially reducible to B we define p by p(x) = 3x/2.
Integer multiplication is a polynomial-time procedure.

Observe that:

=⇒: If x ∈ A then x = 2k for some k ∈ Z and then p(x) = 3x/2 = 3(2k)/2 =
3k so p(x) ∈ B.

⇐=: If p(x) ∈ B then p(x) = 3k for some k ∈ Z and then 3x/2 = 3k so
x = 2k so x ∈ A.

�

10

Example 5.5. Define the sets A and B as follows:

A = {s
∣∣∣s is a string}

B = {s
∣∣∣s is a string ending with “Z”}

To prove that A is polynomially reducible to B we define p by p(s) = s+“Z ′′

where + is string concatenation. String concatenation is a polynomial-time
procedure.

Observe that:

=⇒: If s ∈ A then p(s) = s +′′ Z ′′ ends with “Z ′′ so p(x) ∈ B.

⇐=: If p(s) ∈ B then p(s) ends with “Z ′′. Thus s+′′ Z ′′ ends with “Z” and
so s is a string so s ∈ A.

�

11

5.3 Decision Problems and Algorithms

Now let’s work this up to some algorithms. First, here’s the definition:

Definition 5.3.1. For decision problems Q1 and Q2 We say that Q1 is polyno-
mially reducible to Q2 if there is some algorithm p which runs in polynomial time
which convertes instances for Q1 to instances for Q2 such that Q1(I) = Y ES
iff Q2(p(I)) = Y ES.

If this is the case then we’ll write:

Q1 ≤P Q2

Note 5.3.1. It’s not important how long Q2 takes and sometimes Q2 is called
an oracle instead to try to impart the idea that it just knows with no work at
all.

Example 5.6. Suppose a function ORACLE(n) decides something and re-
turns YES or NO. Consider the following algorithm for QUESTION(n):

function QUESTIONS(n)

for i = 1 to n

if ORACLE(i)

return(YES)

end

end

return(NO)

end

Observe that QUESTION is polynomially reducible to ORACLE. We would thus
write QUESTION ≤P ORACLE.

Note that there might be other algorithms that do whatever QUESTION does
and they may do it faster, but we don’t know. What we do know, how-
ever, is that this algorithm for QUESTION reduces the problem to ORACLE in
polynomial time so it’s essentially “no harder than” ORACLE(n). �

�

Here is another example:

Example 5.7. Consider these two decision problems:

ISHAMILTON(G): Given an undirected graph on n vertices, is there a
Hamiltonian cycle in the graph?

ORACLE(G): Given a directed graph on n vertices, is there a Hamiltonian
cycle in the graph?

Given a undirected graph G the adjency matrix for G also represents the

12

adjency matrix for G′ where G′ is obtained from G by replacing each (undi-
rected) edge with two edges, one in each direction. This takes no time. We
can then apply ORACLE(G) to find a Hamiltonian cycle in G′ which is also a
Hamiltonial Cycle in G.

It follows that ISHAMILTON ≤P ORACLE.

Now then, it is widely believed that ISHAMILTON 6∈ P and so if this is
true, then ORACLE 6∈ P also.

�
And one more:

Example 5.8. Consider these two decision problems:

ISZEROSUBSET (S): Given a set S of n integers is there a subset which
adds to 0?

ORACLE(S, x): Given a set S of n integers and one integer x in the set, is
there a subset of S − {x} which adds to −x?

To see this suppose we have a set S of integers. We iterate through each
element x of S and for each we ask if ORACLE(S, x) == Y ES. If it is
true for at least one x then we return Y ES for ISZEROSUBSET (S) and
otherwise we return NO.

It follows that ISZEROSUBSET ≤P ORACLE.

�

13

5.4 Stepping Away from Decision Problems

This same idea of polynomial reduction can then apply to problems which are
not decision problems.

Example 5.9. Consider the non-decision problem:

SOLV E(B): Given a partially filled n2 × n2 sudoku board B which has a
solution, find it.

And the decision problem:

ORACLE(B, x, y, v): Given a partially filled n2 × n2 sudoku board B, is
there a solution with the value v placed into the empty space with coordi-
nates (x, y)?

Observe that if we are given a partially filled sudoku board we can iterate
through the empty spaces and for each one we can test values 1 through n2

using ORACLE. We know there’s a solution so for each empty space we
will find a value which works so we add this to our solution. At the end
we have solved it. Note that there are at fewer than (n2)(n2) = n4 empty
spaces and we have to test at most n2 values in each space so this is O(n6).

Thus we can calculate SOLV E in polynomial time as a function of ORACLE.

5.5 Some Facts about Polynomial Reducibility

Now we can formalize some facts for decision problems Q1 and Q2:

• If Q1 ≤P Q2 and Q2 ∈ P then Q1 ∈ P .

• If Q1 ≤P Q2 and Q1 6∈ P then Q2 6∈ P .

For the mathematicians here, a nice way of thinking about this is to imagine
three functions q1(x), q2(x), and p(x). Suppose we know for sure that p(x) is a
polynomial and we know that q1(x) = p(q2(x)).

Then we can say:

• q1 is a polynomial in terms of q1.

• If q2(x) is a polynomial then q1(x) is a polynomial.

• If q1(x) is not a polynomial then q2(x) is not a polynomial.

Note that if p(x) is not a polynomial we can say nothing.

14

6 Thoughts, Problems, Ideas

1. Explain how you know that the following decision problems are in P . You
don’t need to provide pseucode, a basic explanation will suffice.

(a) Y∨N: Given a list with n elements, is it unsorted?

(b) Y∨N: Given the adjacency matrix for a graph with n vertices, is
there one vertex which is connected to all the others?

(c) Y∨N: Given base-10 list representations of two n digit numbers A
and B, is AB ≥ 5 · 102n−2?
For example is 84 · 23 ≥ 58 · 102 = 500 ?

(d) Y∨N: Given a list with n elements, is the maximum to the left of
the minimum?

2. For each of the following you are given a problem PROB and an associ-
ated decision problem DEC. For each, write pseudocode to show that if
DEC ∈ P then PROB can be solved in polynomial time.
Note: Don’t worry about whether or not it’s true in the real world that
DEC ∈ P , just assume it is and base your pseudocode on it.

(a) Given a simple connected unweighted graph with n vertices.
PROB: Find length of the longest path.
DEC: For any given k, is there a path of length k?

(b) Given a list A of n integers, a subset S ⊂ A, and a target t.
PROB: Assuming there is a subset of A containing S which sums to
t, find it.
DEC: Is there a subset of A containing S which sums to t?

(c) Given an integer n ≥ 2.
PROB: Find the smallest prime factor of n.
PROB: For any given k, is k prime?

3. Explain why reverse-sorting a list is polynomially reducible to sorting a
list.

4. Suppose a garage contains n motorcycles each of which has 1, 2 or 4 cylin-
ders. Explain why fixing all cylinders on all motorcycles is polynomially
reducible to fixing one cylinder.

5. Suppose G is a simple graph with n vertices. Explain why counting the
edges in the graph is polnomially reducible to calculating the degree of a
vertex.

15

	Polynomial Time
	P
	NP
	Definition
	An Algorithm for a Verifier which Proves NP

	P v NP
	Problem Reduction and Equivalence
	Introduction
	Using Explicit Sets
	Decision Problems and Algorithms
	Stepping Away from Decision Problems
	Some Facts about Polynomial Reducibility

	Thoughts, Problems, Ideas

