
CMSC 250: Program Verification

1. The Big Idea

We’d like to verify that an algorithm does what it should. What this essentially means is that before
the algorithm we have a certain number of pre-conditions that are set, then the algorithm executes,
and then we have some post-conditions which we require to be satisfied.

Defn: We say that the algorithm is correct if, when various pre-conditions are set and the algorithm
is executed, the post-conditions are met.

2. A Pseudo-Example.

Suppose we wish to write an algorithm which takes a positive real n and finds another real m with
m2 = n. The basic structure would then look like this:

\\ Precondition: n is any positive real.

MYSTERIOUS ALGORITHM: Calculates m somehow.

\\ Postcondition: m^2 = n

Here are some examples of correct and incorrect algorithms:

Correct:

\\ Precondition: n is any positive real.

Assign m = sqrt(n)

\\ Postcondition: m^2 = n

Correct:

\\ Precondition: n is any positive real.

Assign m = -sqrt(n)

\\ Postcondition: m^2 = n

Inorrect (because the post-condition will not be met for any positive real):

\\ Precondition: n is a positive integer.

Assign m = n

\\ Postcondition: m^2 = n

3. Fact: This is Hard!

It’s not easy to verify whether a given algorithm is correct, especially when the algorithm is long and
complicated. Testing can be performed whereby lots of input is provided and output is tested and this
can provide some assurance but it is by no means a proof.

Here we’ll focus specifically on the correctness of loops.

4. Correct Loops

We can make the above definition more specific when it comes to a loop.

Defn: We say that a loop is correct (with regards to its pre- and post-conditions) if, when various
pre-conditions are met and the loop terminates after a finite numbers of steps, the post-conditions are
met.



5. Loop Invariants

Focusing on loops allows us to introduce the concept of a loop invariant. A loop invariant is a predicate
(either T or F) whose status we can monitor through the loop and which can help us determine if a
loop is correct.

Defn: A loop invariant is a predicate which satisfies the following:

• For each iteration, if it is true at the start of the iteration then it is true when the iteration has
finished.

In and of itself this is not particularly useful but when we attach two other conditions:

• It is true before the first iteration of the loop.

• If the loop terminates after finitely many steps, then if the loop invariant is true then the post-
conditions are satisfied.

Then the loop will be correct.

A loop invariant can be denoted LI(n) where n denotes the iteration count of the loop. With this
notation LI(0) represents the loop invariant before the first iteration, LI(n) represents the loop in-
variant at the start of the n^th iteration, LI(n+1) represents the loop invariant at the end of the n^th

iteration (or at the start of the (n+1)^st iteration), and so on. When the loop ends the loop invariant
will be represented by LI(N) where N is the number of iterations which the loop took to complete.

The correctness of the loop as it relates to the loop invariant is then summarized in the:

Loop Invariant Theorem: Let a while loop with guard predicate G be given, along with pre- and
post-condition predicates PRE and POST. Also let a predicate LI(n) be given. Then, if the following
four conditions are met, the loop will be correct:

(a) Basis Property: If PRE is true then LI(0) is true (in other words that LI is true before the first
iteration of the loop).

(b) Inductive Property: For all k >= 0 if the guard G is true and if LI(k) is true, then LI(k+1)

is true. Note that it can be helpful when doing this to introduce new variables to clarify when
variables change within the loop. We’ll see this in our examples.

(c) Termination: After a finite number of steps we have ~G, meaning the loop terminates.

(d) Correctness of Post-Condition: If LI(N) then POST, where N is the least number of steps after
which the loop terminates (that is, G is false).

Proof: Suppose PRE is true. By the Basis Property then LI(0) is true. The Basis Property coupled
with the Inductive Propery then tells us that LI(n) is true for all n >= 0. By Termination we know
the loop terminates and so ~G. Let N be the last number of steps after which it terminates then we
know that LI(N) is true. Then by the Correctness of Post-Condition we have POST.

QED
In brief (this is a summary of the above) there are four things we have to prove:

(a) Basis: If PRE then LI(0).

(b) Inductive: If G and LI(k) then LI(k+1).

(c) Termination: Eventually ~G.

(d) Correctness of Post: If LI(N) then POST, where N is the least number of steps after which ~G.



6. Example: Finding xp for any x ∈ R∗ and any p ∈ Z+.

We have a nonzero real number x and a positive integer p and we wish to calculate x^n. Here is the
pseudocode:

\\ PRE: x is a nonzero real number

\\ PRE: p is a positive integer

\\ PRE: i = 1

\\ PRE: result=1

while i <= p

result=result*x

i=i+1

end

\\ POST: result = x^p

We’ll introduce the list invariant;

LI(n): n = i-1 and result = x^(i-1)

Now then let’s observe the requirements of the theorem:

Base: Check that PRE implies LI(0).

Let’s assume PRE, so then we have: x a nonzero real number, p a positive integer and i = 1.

We claim LI(0), in other words, we claim that 0 = i-1 and result = x^0

Well i = 1 and so 0 = 1-1 and result = 1 = x^0 as desired.

Induction: Check that for all k >= 0 if the guard G is true and if LI(k) is true, then LI(k+1) is true.

Suppose the guard is true (so i <= n) and LI(k) is true. To have LI(k) true means:

k = i-1 and result = x^(i-1)

At the end of the iteration we have the new value of i, which we’ll denote i’ and a new result, which
we’ll denote result’, and we need to check that LI(k+1) is true, meaning:

k+1 = i’-1 and result’ = x^(i’-1)

First, observe that i’ = i+1 and so k = i-1 ⇒ k+1 = i ⇒ k+1 = i’-1.

Second, observe that result = x^(i-1) and result’ = result*x tell us that and the end of the
iteration we have result’ = x^(i-1)*x = x^i = x^(i’-1).

Termination: Check that after a finite number of steps we have ~G.

The loop starts at i = 1, performs i = i+1, and terminates at i = p+1 so the loop will terminate
after p iterations.

Post Check: Check that if N is the least number of steps after which ~G and if LI(N), then POST.

Since the loop terminates after p iterations we have N = p. Suppose that LI(N) = LI(n) is true, which
means:

N=i-1 and result = x^(i-1)

Then observe result = x^(i-1) = x^N = x^p, which is POST.

QED



7. Example: Finding the maximum of a list.

We have a list A for which we with to find the minimum. Here is the pseudocode:

\\ PRE: A = list of real numbers.

\\ PRE: len = length of A

\\ PRE: max = A[0]

\\ PRE: i = 1

while i < len

if A[i] > max

max = A[i]

end

i=i+1

end

\\ POST: max = maximum of A[0..len-1].

We’ll introduce the list invariant;

LI(n): n = i-1 and max=maximum value in A[0..i-1]

Now then let’s observe the requirements of the theorem:

Base: Check that PRE implies LI(0).

Let’s assume PRE, so then we have: A a list of numbers, max = A[0] and i = 1.

We claim LI(0), in other words, we claim that 0 = i-1 and max=maximum value in A[0..i-1].

Well i = 1 and so 0 = 1-1 and maximum value in A[0..0] = A[0] = max as desired.

Induction: Check that for all k>=0 if the guard G is true and if LI(k) is true, then LI(k+1) is true.

Suppose the guard is true (so i < n) and LI(k) is true. To have LI(k) true means:

k = i-1 and max=maximum value in A[0..i-1].

At the end of the iteration we have the new value of i, which we’ll denote i’ and a new max, which
we’ll denote max’, and we need to check that LI(k+1) is true, meaning:

k+1 = i’-1 and max’ = maximum value in A[0..i’-1]

First, observe that i’ = i+1 and so k = i-1 ⇒ k+1 = i ⇒ k+1 = i’-1.

Second, since at the start of the loop max = maximum value in A[0..i-1]. The code examines A[i]
and if A[i] > max then max is updated to this new value, otherwise it is left alone. Consequently at
the end of the loop we have max’=maximum value in A[0..i] = A[0..i’-1] as desired.

Termination: Check that after a finite number of steps we have ~G.

Since the loop starts at i = 1, performs i = i+1, and terminates at i = len the loop will terminate
after len-1 iterations.

Post Check: Check that if N is the least number of steps after which ~G and if LI(N), then POST.

Since the loop terminates after len-1 iterations we have N = len-1. Suppose that LI(N) is true, which
means:

N = i-1 and max = maximum value in A[0..i-1]

Then observe max = maximum value in A[0..i-1] = A[0..N] = A[len-1], which is POST.

QED



8. Example: Performing an insert sort on a list.

We have a list A and we wish to perform an insert sort. We’re focusing on the outer while loop.

\\ PRE: A = a list

\\ PRE: len = the length

\\ PRE: i = 1

while i < len

nextval = A[i]

j = i-1

while j >= 0 and nextval < A[j]

A[j+1] = A[j]

j = j-1

end

A[j+1] = nextval

i = i + 1

end

\\ POST: A is a sorted list

We’ll introduce the list invariant;

LI(n): n = i-1 and A[0..i-1] is sorted

Now then let’s observe the requirements of the theorem:

Base: Check that PRE implies LI(0).

Let’s assume PRE, so then we have: A is a list and i = 1.

We claim LI(0), in other words, we claim that 0 = i-1 and A[0..i-1] is ordered.

Well i = 1 and so 0 = 1-1 and A[0..i-1] = A[0] which is a single element and hence is ordered.

Induction: Check that for all k >= 0 if the guard G is true and if LI(k) is true, then LI(k+1) is true.

Suppose the guard is true (so i < n) and LI(k) is true. To have LI(k) true means:

k = i-1 and A[0..i-1] is sorted

At the end of the iteration we have the new value of i, which we’ll denote i’, and an updated list
which we’ll denote A’, and we need to check that LI(k+1) is true, meaning:

k+1 = i’-1 and A’[0..i’-1] is sorted

First, observe that i’ = i+1 and so k = i-1 ⇒ k+1 = i ⇒ k+1 = i’-1.

Second, at the start of the loop A[0..i-1] is sorted. The code assigns nextval = A[i], this is the
value it needs to insert into the correct position in A[0..i]. The code starts at index j=i-1 and
for each j if nextval < A[j] then nextval needs to be inserted somewhere before index j and so
A[j] is moved to the right by assigning A[j+1] = A[j]. Eventually either nextval >= A[j] which
means nextval should go to the right of index j or else j == -1 which will happen if the code reaches
the start of the list without finding a value smaller than nextval. Either way the inner while loop
ends and nextval is inserted using A[j+1] = nextval. We now have, for our updated list A’, that
A’[0..i] = A’[0..i’-1] is sorted as desired.

Termination: Check that after a finite number of steps we have ~G.

Since the loop starts at i = 1, performs i = i+1, and terminates at i = len the loop will terminate
after len-1 iterations.

Post Check: Check that if N is the least number of steps after which ~G and if LI(N), then POST.

Since the loop terminates after len-1 iterations we have N = len-1. Suppose that LI(N) is true.

N = i-1 and A[0..i-1] is sorted

Then observe A[0..i-1] = A[0..N] = A[0..len-1] is sorted, which is POST.

QED


