
CMSC 351: QuickSort

Justin Wyss-Gallifent

March 24, 2025

1 What it Does . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Partitioning Overview . . . . . . . . . . . . . . . . . . . . . . . . 3
4 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5 Pivot Key Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Pseudocode Time Complexity . . . . . . . . . . . . . . . . . . . . 9
7 Auxiliary Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9 In-Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
11 Thoughts, Problems, Ideas . . . . . . . . . . . . . . . . . . . . . . 13
12 Python Test - Pivot on Final Element . . . . . . . . . . . . . . . 15
13 Python Test - Pivot on Random Element . . . . . . . . . . . . . 17

1



1 What it Does

Sorts a list of elements on which there is a total order. Think of integers or real
numbers.

2 Overview

QuickSort works by first choosing an element in the list called the pivot key
(at some initial pivot index) and then rearranging the list (including probably
moving the the pivot key) so that every element smaller than pivot key is to the
left of it and every element larger than the pivot key is to the right of it. This
is called the partitioning process.

We then apply QuickSort recursively to the left and right sublists.

When QuickSort is applied to a single element it does nothing, since a single
element is always sorted.

The choice of pivot key is nuanced. For now we will consistently choose the
final key in the list. If another key is chosen it is simply first exchanged with
the final key in the list before proceeding.

2



3 Partitioning Overview

The encoding of the partitioning process can seem a bit convoluted so it’s worth
summarizing what is effectively happening in the following way which clarifies
that it does what we claim it does.

Pick the leftmost element which is greater than the pivot key and swap it with
the first subsequent element which is less than or equal to the pivot key. Re-
peating until there are no subsequent elements left. The final swap will be with
the actual pivot key and the result will be that all elemements to the left of the
pivot key will be less than or equal to the pivot key and all elements to the right
of the pivot key will be greater than the pivot key.

Example 3.1. Consider the list A with the pivot key p = 3.

5

0

2

1

4

2

1

3

3

4

A

index

The leftmost element greater than p = 3 is A[0] = 5. The first subsequent
element less than or equal to p = 3 is A[1] = 2 so we swap those two:

2

0

5

1

4

2

1

3

3

4

A

index

The leftmost element greater than p = 3 is A[1] = 5. The first subsequent
element less than or equal to p = 3 is A[3] = 1 so we swap those two:

2

0

1

1

4

2

5

3

3

4

A

index

The leftmost element greater than p = 3 is A[2] = 4. The first subsequent
element less than or equal to p = 3 is A[4] = 3 so we swap those two:

2

0

1

1

3

2

5

3

4

4

A

index

The leftmost element greater than p = 3 is A[3] = 5. There are no subse-
quent elements less than or equal to p = 3. Thus we are done.

Observe that the pivot keys is such that all elements to the left are less than
or equal to it and all elements to the right are greater than it.

3



4 Pseudocode

The actual algorithmic implementation is a bit more nuanced and has a small
quirk.

\\ PRE: A is a list of length n.

\\ Note that A is considered global here.

function quicksort(A,L,R)

if L < R then

resultingpivotindex = partition(A,L,R)

quicksort(A,L,resultingpivotindex -1)

quicksort(A,resultingpivotindex +1,R)

end

end

function partition(A,L,R)

\\ To use a different pivotkey

\\ swap it with A[R] here.

pivotkey = A[R]

t = L

for i = L to R-1

if A[i] <= pivotkey

A[t] <-> A[i]

t = t + 1

end

end

A[t] <-> A[R]

return t

end

quicksort(A,0,n-1)

\\ POST: A is sorted.

Loosely speaking t keeps track of the leftmost key larger than the pivot key and
i hunts down the subsequent key less than or equal to the pivot key. We say
“loosely” because if the list starts with keys less than or equal to the pivot key
then the algorithm will swap them with themselves for a while.

4



Example 4.1. Let’s trace the implementation on the following list with n =
7 elements. Note that the initial call to quicksort is the call quicksort(A,0,7-1)
which then calls partition(A,0,6) which runs for i = 0 to 5. We have
L=0 and R=6.

2

0

1

1

6

2

1

3

8

4

4

5

5

6

p=5

A

index

The pivot key is p=5 at index 6.

We set t=0 and iterate from i=0:

2

0

t,i

1

1

6

2

1

3

8

4

4

5

5

6

p=5

A

index

We see A[i]=A[0]=2<=5 is true and swap A[i]<->A[t] which effectively
swaps A[0]<->A[0]. We increase t so now t=1. We now have i=1:

2

0

1

1

t,i

6

2

1

3

8

4

4

5

5

6

p=5

A

index

We see A[i]=A[1]=1<=5 is true and swap A[i]<->A[t] which effectively
swaps A[1]<->A[1]. We increase t so now t=2. We now have i=2:

2

0

1

1

6

2

t,i

1

3

8

4

4

5

5

6

p=5

A

index

We see A[i]=A[2]=6<=5 is false and we do nothing. We now have i=3:

2

0

1

1

6

2

t

1

3

i

8

4

4

5

5

6

p=5

A

index

Notice that finally t indicates the location of the leftmost element greater
than the pivot key. This is when things actually start to happen.

We see A[i]=A[3]=1<=5 is true and swap A[i]<->A[t] which effectively
swaps A[3]<->A[2]. We increase t so now t=3. We now have i=4:

2

0

1

1

1

2

6

3

t

8

4

i

4

5

5

6

p=5

A

index

5



We see A[i]=A[4]=6<=5 is false and we do nothing. We now have i=5:

2

0

1

1

1

2

6

3

t

8

4

4

5

i

5

6

p=5

A

index

We see A[i]=A[5]=4<=5 is true and swap A[i]<->A[t] which effectively
swaps A[5]<->A[3]. We increase t so now t=4. There is no i since the loop
has ended:

2

0

1

1

1

2

4

3

8

4

t

6

5

5

6

p=5

A

index

The loop has ended and we do a final A[t]<->A[R] which effectively swaps
A[4]<->A[6], putting the pivot key in location t so that finally we are done
this partition process:

2

0

1

1

1

2

4

3

5

4

t

6

5

8

6

A

index

Now we are done.

Example 4.2. Let’s trace the implementation on the following list with n =
12 elements. Note that the initial call to quicksort is the call quicksort(A,0,12-1)
which then calls partition(A,0,11) which runs for i = 0 to 10. We
have L=0 and R=11.

For example consider this list:

10

0

4

1

3

2

1

3

7

4

4

5

3

6

5

7

6

8

2

9

11

10

5

11

p=5

A

index

Set t=0 and i=0:

10

0

t,i

4

1

3

2

1

3

7

4

4

5

3

6

5

7

6

8

2

9

11

10

5

11

p=5

A

index

No swap, iterate i=1:

10

0

t

4

1

i

3

2

1

3

7

4

4

5

3

6

5

7

6

8

2

9

11

10

5

11

p=5

A

index

6



Swap, iterate t=1 and iterate i=2:

4

0

10

1

t

3

2

i

1

3

7

4

4

5

3

6

5

7

6

8

2

9

11

10

5

11

p=5

A

index

Swap, iterate t=2 and iterate i=3:

4

0

3

1

10

2

t

1

3

i

7

4

4

5

3

6

5

7

6

8

2

9

11

10

5

11

p=5

A

index

Swap, iterate t=3 and iterate i=4:

4

0

3

1

1

2

10

3

t

7

4

i

4

5

3

6

5

7

6

8

2

9

11

10

5

11

p=5

A

index

No swap, iterate i=5:

4

0

3

1

1

2

10

3

t

7

4

4

5

i

3

6

5

7

6

8

2

9

11

10

5

11

p=5

A

index

Swap, iterate t=4 and iterate i=6:

4

0

3

1

1

2

4

3

7

4

t

10

5

3

6

i

5

7

6

8

2

9

11

10

5

11

p=5

A

index

Swap, iterate t=5 and iterate i=7:

4

0

3

1

1

2

4

3

3

4

10

5

t

7

6

5

7

i

6

8

2

9

11

10

5

11

p=5

A

index

Swap, iterate t=6 and iterate i=8:

4

0

3

1

1

2

4

3

3

4

5

5

7

6

t

10

7

6

8

i

2

9

11

10

5

11

p=5

A

index

No swap, iterate i=9:

7



4

0

3

1

1

2

4

3

3

4

5

5

7

6

t

10

7

6

8

2

9

i

11

10

5

11

p=5

A

index

Swap, iterate t=7 and iterate i=10:

4

0

3

1

1

2

4

3

3

4

5

5

2

6

10

7

t

6

8

7

9

11

10

i

5

11

p=5

A

index

Loop done. Swap A[t]<->A[R]:

4

0

3

1

1

2

4

3

3

4

5

5

2

6

5

7

6

8

7

9

11

10

10

11

A

index

8



5 Pivot Key Choice

For simplicity we choose the last key of the sublist as the pivot but this is
perhaps less than idea. For example if the list is already sorted then choosing
the last element as the pivot key results in the algorithm taking as long as
possible and not actually changing anything - try it on some data and see!

Intuitively if the input is close to sorted then choosing the last element (or in
fact the first element) as the pivot will result in very slow running time.

In order to prevent this there are other ways we can choose the initial pivot
key. One way is simply randomly. This adds very little time to the process
since typically random number generation is Θ(1). Whether it helps or not is
something we’ll have to see.

It might be tempting to choose the initial pivot index so that the pivot key is
the median, since that results in a nice balanced partition, but this is in and of
itself challenging as we’ll see later.

6 Pseudocode Time Complexity

Let T (n) be the time complexity of a call to QuickSort.

A call to QuickSort on a list of length n invokes both a partitioning call and two
subsequent recursive calls to QuickSort. If the resultingpivotindex returns
index k then one of them to a sublist of length k and one of them to a sublist
of length n− k − 1

Those recursive calls take time T (k) and T (n− k − 1) respectively.

The partition call on a list of length n does some constant time c1 work and
also iterates over n− 1 elements, say it take time c2 for each iteration, thus in
total it takes c1 + c2(n− 1).

Hence we have the recurrence relation:

T (n) = T (k) + T (n− k − 1) + c2n+ (c1 − c2)

1. Worst Case: The worst-case occurs when the resultingpivotindex is
the first or last element in the sublist.

This results in the sublist being only one element smaller than the list
itself and the other sublist being length zero. Without loss of generality
if k = 0 in the above relation we have

T (n) = T (n− 1) + c2n+ (c1 − c2)

9



We cannot solve this with the Master Theorem but observing that T (1) =
c3 for some constant c3 we can derive a pattern:

T (1) = c3

T (2) = T (1) + c2(2) + (c1 − c2) = c1 + c2 + c3

T (3) = T (2) + c2(3) + (c1 − c2) = (c1 + c2 + c3) + 3c2 + (c1 − c2) = 2c1 + 3c2 + c3

T (4) = T (3) + c2(4) + (c1 − c2) = (2c1 + 3c2 + c3) + 4c2 + (c1 − c2) = 3c1 + 6c2 + c3

T (5) = T (4) + c2(5) + (c1 − c2) = (3c1 + 6c2 + c3) + 5c2 + (c1 − c2) = 4c1 + 10c2 + c3

T (6) = T (5) + c2(6) + (c1 − c2) = (4c1 + 10c2 + c3) + 6c2 + (c1 − c2) = 5c1 + 15c2 + c3

... =
...

T (n) = (n− 1)c1 +
n(n+ 1)

2
c2 + c3

This results in T (n) = Θ(n2).

2. Best-Case: The best-case occurs when the resultingpivotindex is in
the middle of the sublist.

This results in the sublists being of equal size. then in the above relation
we have

T (n) = 2T (n/2) + c2n+ (c1 − c2)

which results in T (n) = Θ(n lg n) by the Master Theorem.

3. Average-Case:

As per earlier discussions we need to understand what “average” means.

QuickSort is interesting in that the underlying partition method has time
complexity θ(n) which does not depend upon the order of the elements.
This is because n− 1 comparisons are made in every case, and then some
other constant stuff.

As a consequence the only thing that influences the time complexity of
QuickSort is the resulting pivot position after each partition which dictates
the sizes of the sublists on which the recursive calls are made.

Thus one perfectly reasonable way to understand the average case is to
not worry about the lists themselves but instead to look at all possible
pivot positions and average the time complexity of all of them. In this
case we get the following recurrence relation:

10



T (n) =

1 if n ≤ 1

1
n

n−1∑
k=0

[T (k) + T (n− k − 1) + Θ(n)] otherwise

This is not easy to solve but essentially the idea is to show that this is
O(n lg n). This is done by constructive induction. I am omitting the proof
for now.

7 Auxiliary Space

Suppose S(n) is the auxiliary space required for a list of length n. Consider
then:

• In the best case the pivot key ends up in the middle of the list each time.
Since the first recursive call to Quicksort frees the memory before the
second call and since partition requires Θ(1) auxiliary space the total
auxiliary space satisfies the recurrence relation:

S(n) = S(n/2) + Θ(1)

This yields S(n) = Θ(lg n) by Case 2 of the Master Theorem.

• In the worst case the pivot ends up at one end each time. In this case the
the total auxiliary space satisfies the recurrence relation:

S(n) = S(n− 1) + Θ(1)

This yields S(n) = Theta(n) by digging down.

8 Stability

QuickSort is not stable. This is because the final swap A[t] <-> A[R] could
place the pivot key to the left of an equal key.

9 In-Place

QuickSort is in-place.

10 Notes

A few notes:

1. Ideally (mathematically) at each step the median of the keys would be
used as the pivot element. The exercises ask you to think about why.
There is a method we’ll see later called the Median of Medians which can

11



find the median in O(n) time. However it’s still slow, relatively speaking,
and thus...

2. In practice choosing an element randomly is the usual approach, even
though this the actual implementation is slightly slower. The exercises
ask you to think about why.

3. After k iterations we can draw some conclusions about which elements are
correctly placed. The exercises discuss this further.

12



11 Thoughts, Problems, Ideas

1. Show the steps of the first partition of QuickSort on the list [10,6,7,2,4,3].
Use the final index as the initial pivot index.

2. Show the full steps of QuickSort on the list [10,6,7,2,4,3]. Use the
final index as the initial pivot index.

3. Consider QuickSort used on the list [11,6,5,45,23,7,2]. Which initial
pivot index and pivot key should be used as the first pivot to ensure that
the result of the first partition is equally balanced? Show the result of
doing this first partition.

4. Suppose the resultingpivotindex somehow ended up consistently one
third of the way through the list. What would be the correponding recur-
rence relation? Can the Master Theorem be used to solve this? Can you
say anything about the time complexity?

5. Consider the theoretical case where the resultingpivotindex consis-
tently ends up 1/2 of the way through the list and the theoretical case
where the resultingpivotindex consistently ends up 1/4 of the way
through the list. Essentially the corresponding recurrence relations would
be something like:

T1/2(n) = T (bn/2c) + T (bn/2c) + Θ(n)

T1/4(n) = T (bn/4c) + T (b3n/4c) + Θ(n)

Suppose in addition that:

• The Θ(n) term is actually 5n+ 2.

• You know that T (0) = 0 and T (1) = 2.

(a) Find each time complexity for keys n = 0, 10, 20, ..., 100. (You are
welcome to do this in recursive code and if you do, include your code.
It’s not hard - each is six simple lines of Python, for example.)

(b) Plot the corresponding data and connect with smooth lines.

(c) Which of these does your data suggest has a better Θ time complex-
ity? Explain.

6. Give a specific example which illustrates the fact that QuickSort is not
stable. Illustrate where in the process the stability breaks down. You
don’t need to show the entire implementation, just enough to justify.

13



7. Consider these two approaches to pivot key selection:

• Obtain index of the median, use as initial pivot index.

• Choose random index, use as initial pivot index.

In practice both of these are average case Θ(n lg n).

(a) Mathematically, using the median is better. Why?

(b) In practice, using a random element is the standard approach. Why
not the median?

8. Suppose a list has n = 2k − 1 elements for some k and suppose that
somehow, magically, the index of the median is chosen at every stage for
the initial pivot index. In this case we can explicitly calculate the number
of calls to quicksort, the length of each list it is called on, and the number
of subsequent calls to partition. Remember that quicksort only calls
partition in the case l<r so when l==r (list of length 1) quicksort exits.

Consider the case where n = 24 − 1 = 15. Observe there will be:

• 1 initial call to quicksort with a list of length 15, resulting in 1 call
to partition and then ...

• a total of 2 calls to quicksort with lists of length 7, resulting in a
total of 2 calls to partition and then ...

• a total of 4 calls to quicksort with lists of length ???, resulting in a
total of ??? calls to partition and then ...

• and so on, until it ends.

(a) Complete the counting argument above - finish the third bullet point
and then the remaining bullet points until the argument ends. There
should be only four bullet points total.

(b) What would the counting argument be for n = 2k−1 for an arbitrary
k? It’s not hard, just generalize the pattern in (a).

(c) Suppose that each call to partition on a list of length i takes time
c1i. Ignoring all other time requirements (the call to partition is
the important one) write down and evaluate the sum which gives the
total time requirement of the algorithm. Does the time complexity
of this result correspond to the best-case analysis?

9. Modify the QuickSort pseudocode so that it chooses the first element as
the pivot key.

10. Modify the QuickSort pseudocode so that it randomly chooses a pivot.

11. Modify the QuickSort pseudocode so that it sorts the list in decreasing
order.

14



12 Python Test - Pivot on Final Element

Code:

import random

A = []

for i in range (0 ,15):

A.append(random.randint (0 ,100))

A = [5,8,3,4,10,7]

n = len(A)

print(A)

def quicksort(l,r,indent ):

if l<r:

resultingpivotindex = partition(l,r,indent +2)

quicksort(l,resultingpivotindex -1,indent +2)

quicksort(resultingpivotindex +1,r,indent +2)

print(indent*’_’ + ’Recombine: ’+str(A[l:r+1]))

def partition(l,r,indent ):

print(indent*’_’ + ’Subarray: ’ + str(A[l:r+1]))

# To use a different pivotvalue

# swap it with A[r] here.

pivotvalue = A[r]

t = l

for i in range(l,r):

if A[i] <= pivotvalue:

temp = A[t]

A[t] = A[i]

A[i] = temp

t = t + 1

print(A)

temp = A[t]

A[t] = A[r]

A[r] = temp

print(indent*’_’ + ’Pivot around final element.’)

print(indent*’_’ + ’Result: ’ + str(A[l:r+1]))

return(t)

quicksort (0,n-1,0)

print(A)

15



Output:

[50, 4, 24, 90, 92, 84, 33, 27, 81, 13, 2, 44, 62, 28, 80]

__Subarray: [50, 4, 24, 90, 92, 84, 33, 27, 81, 13, 2, 44, 62, 28, 80]

__Pivot around final element.

__Result: [50, 4, 24, 33, 27, 13, 2, 44, 62, 28, 80, 92, 81, 84, 90]

____Subarray: [50, 4, 24, 33, 27, 13, 2, 44, 62, 28]

____Pivot around final element.

____Result: [4, 24, 27, 13, 2, 28, 50, 44, 62, 33]

______Subarray: [4, 24, 27, 13, 2]

______Pivot around final element.

______Result: [2, 24, 27, 13, 4]

________Subarray: [24, 27, 13, 4]

________Pivot around final element.

________Result: [4, 27, 13, 24]

__________Subarray: [27, 13, 24]

__________Pivot around final element.

__________Result: [13, 24, 27]

________Recombine: [13, 24, 27]

______Recombine: [4, 13, 24, 27]

____Recombine: [2, 4, 13, 24, 27]

______Subarray: [50, 44, 62, 33]

______Pivot around final element.

______Result: [33, 44, 62, 50]

________Subarray: [44, 62, 50]

________Pivot around final element.

________Result: [44, 50, 62]

______Recombine: [44, 50, 62]

____Recombine: [33, 44, 50, 62]

__Recombine: [2, 4, 13, 24, 27, 28, 33, 44, 50, 62]

____Subarray: [92, 81, 84, 90]

____Pivot around final element.

____Result: [81, 84, 90, 92]

______Subarray: [81, 84]

______Pivot around final element.

______Result: [81, 84]

____Recombine: [81, 84]

__Recombine: [81, 84, 90, 92]

Recombine: [2, 4, 13, 24, 27, 28, 33, 44, 50, 62, 80, 81, 84, 90, 92]

[2, 4, 13, 24, 27, 28, 33, 44, 50, 62, 80, 81, 84, 90, 92]

16



13 Python Test - Pivot on Random Element

Code:

import random

A = []

for i in range (0 ,13):

A.append(random.randint (0 ,100))

n = len(A)

print(A)

def quicksort(l,r,indent ):

if l<r:

pivotindex = partition(l,r,indent +2)

quicksort(l,pivotindex -1,indent +2)

quicksort(pivotindex +1,r,indent +2)

print(indent*’_’ + ’Recombine: ’+str(A[l:r+1]))

def partition(l,r,indent ):

print(indent*’_’ + ’Subarray: ’ + str(A[l:r+1]))

p = random.randint(l,r)

temp = A[p]

A[p] = A[r]

A[r] = temp

pivot = A[r]

t = l

for i in range(l,r):

if A[i] <= pivot:

temp = A[t]

A[t] = A[i]

A[i] = temp

t = t + 1

temp = A[t]

A[t] = A[r]

A[r] = temp

print(indent*’_’ + ’Pivot around index ’ + str(p-l))

print(indent*’_’ + ’Result: ’ + str(A[l:r+1]))

return(t)

quicksort (0,n-1,0)

print(A)

17



Output:

[92, 55, 6, 43, 30, 43, 37, 66, 63, 24, 92, 3, 79]

__Subarray: [92, 55, 6, 43, 30, 43, 37, 66, 63, 24, 92, 3, 79]

__Pivot around index 2

__Result: [3, 6, 79, 43, 30, 43, 37, 66, 63, 24, 92, 92, 55]

____Subarray: [79, 43, 30, 43, 37, 66, 63, 24, 92, 92, 55]

____Pivot around index 3

____Result: [43, 30, 37, 24, 43, 66, 63, 55, 92, 92, 79]

______Subarray: [43, 30, 37, 24]

______Pivot around index 3

______Result: [24, 30, 37, 43]

________Subarray: [30, 37, 43]

________Pivot around index 2

________Result: [30, 37, 43]

__________Subarray: [30, 37]

__________Pivot around index 1

__________Result: [30, 37]

________Recombine: [30, 37]

______Recombine: [30, 37, 43]

____Recombine: [24, 30, 37, 43]

______Subarray: [66, 63, 55, 92, 92, 79]

______Pivot around index 1

______Result: [55, 63, 66, 92, 92, 79]

________Subarray: [66, 92, 92, 79]

________Pivot around index 0

________Result: [66, 92, 92, 79]

__________Subarray: [92, 92, 79]

__________Pivot around index 1

__________Result: [92, 79, 92]

____________Subarray: [92, 79]

____________Pivot around index 0

____________Result: [79, 92]

__________Recombine: [79, 92]

________Recombine: [79, 92, 92]

______Recombine: [66, 79, 92, 92]

____Recombine: [55, 63, 66, 79, 92, 92]

__Recombine: [24, 30, 37, 43, 43, 55, 63, 66, 79, 92, 92]

Recombine: [3, 6, 24, 30, 37, 43, 43, 55, 63, 66, 79, 92, 92]

[3, 6, 24, 30, 37, 43, 43, 55, 63, 66, 79, 92, 92]

18


	What it Does
	Overview
	Partitioning Overview
	Pseudocode
	Pivot Key Choice
	Pseudocode Time Complexity
	Auxiliary Space
	Stability
	In-Place
	Notes
	Thoughts, Problems, Ideas
	Python Test - Pivot on Final Element
	Python Test - Pivot on Random Element

