
CMSC 351: Recurrence Relations

Justin Wyss-Gallifent

September 28, 2023

1 Introduction . 2
2 Solving Using Digging Down . 3
3 Solving Using Trees . 3
4 Thoughts, Problems, Ideas . 10

1

1 Introduction

Suppose we are analyzing the time complexity T (n) for an algorithm and sup-
pose that we cannot find an explicit closed formula for T (n) but instead we find
a recurrence relation which T (n) satisfies.

A recurrence relation for T (n) tells us how to calculate T (n) for various n in a
recursive manner.

Example 1.1. Suppose we have:

T (n) = 3T (bn/5c) + 2n + 1 and T (1) = 4

Then for example here are some easy ones:

T (1) = 4

T (5) = 3T (1) + 2(5) + 1 = 23

T (25) = 3T (4) + 2(25) + 1 = 120

A slightly more annoying one is:

T (7) = 3T (b7/5c) + 2(7) + 1 = 3T (1) + 15 = 27

An even more annoying one would be T (2) because we’re not given enough
information. in reality we would need to be given T (2), T (3), and T (4) as
well. Luckily since we’re only really usually really concerned with large n
values we can get away with minimal base cases.

�

Formally a recurrence relation like this should have a floor or ceiling inside the
recursive T but in practice this typically dropped for purposes of not getting
too tangled up in the calculations.

For example we might just write:

T (n) = 3T (n/5) + 2n + 1 and T (1) = 4

When we do this every specific calculation that follows becomes an approxima-
tion when the division yields a non-integer but these approximations are good
enough and don’t affect time complexity.

There are two goals we might have with a recurrence relation:

1. Find a closed expression for the function, meaning a T (n) = ... which isn’t
self-referential, or with summations, etc.

2. Find Θ for T (n) if a closed expression is difficult.

2

2 Solving Using Digging Down

One way to obtain a closed expression is to dig into the recurrence relation.
Consider the example:

T (n) = 2T (n/2) + 1
2n with T (1) = 7

We engage in a process of substitution:

T (n) = 2T (n/2) +
1

2
n

= 2

[
2T (n/4) +

1

2
(n/2)

]
+

1

2
n

= 4T (n/4) + n

= 4

[
2T (n/8) +

1

2
(n/4)

]
+ n

= 8T (n/8) +
3

2
n

= 8

[
2T (n/16) +

1

2
(n/8)

]
+

3

2
n

= 16T (n/16) + 2n

= ...

But how and when does it end?

Well, the general expression for the above is, for k = 1, 2, 3, ...:

T (n) = 2kT
(n

2k

)
+

k

2
n

This ends when n/2k = 1 since then we get T (1) = 7. This is when k = lg n.
At that instant the expression becomes:

T (n) = 2lgnT (1) +
1

2
n lg n

= 7n +
1

2
n lg n

We also see T (n) = Θ(n lg n) at this point.

3 Solving Using Trees

We can also use a recursively generated tree to find an explicit formula for T (n).
Such an approach can be messy or not, depending on the recurrence relation

3

and on the n-values we’re analyzing. So as not to go off the deep end, let’s
consider the example again:

Example 3.1. Suppose T (n) = 3T (n/5) + (2n + 1) with T (1) = 4. Let’s
examine T (n) where n = 5k for some k. To understand why there’s a tree
involved we can view the total time done as a very small tree, first with one
node:

T (n)

We can expand this according to the recurrence relation, the tree still show-
ing the total time:

2n + 1

T (n/5) T (n/5) T (n/5)

Of course each of these leaves is its own problem, the tree still showing the
total time.

2n + 1

2(n/5) + 1

T (n/25) T (n/25) T (n/25)

2(n/5) + 1

T (n/25) T (n/25) T (n/25)

2(n/5) + 1

T (n/25) T (n/25) T (n/25)

We could keep going...

2n + 1

2(n/5) + 1

2(n/25) + 1

...
...

...

2(n/25) + 1

...
...

...

2(n/25) + 1

...
...

...

2(n/5) + 1

2(n/25) + 1

...
...

...

2(n/25) + 1

...
...

...

2(n/25) + 1

...
...

...

2(n/5) + 1

2(n/25) + 1

...
...

...

2(n/25) + 1

...
...

...

2(n/25) + 1

...
...

...

4

But when does it stop?

The tree stops growing when we reach T (1) in the nodes because T (1) = 4
and no more recursion happens.

If level i = 0 is the top level then as the tree grows we see that level i has
entries T (n/5i) so the leaf level will happen when we reach T (1) which is
when n/5i = 1 or i = log5 n = k. Thus the kth level is the leaf level.

Thus in total there are k + 1 levels, 0, 1, ..., k, and in those levels:

Level Count Time Level Time

i = 0 1 2n + 1 1(2n + 1) = 30
(
2
(

n
50

)
+ 1
)

i = 1 3 2
(
n
5

)
+ 1 3

(
2
(
n
5

)
+ 1
)

= 31
(
2
(

n
51

)
+ 1
)

i = 2 9 2
(

n
25

)
+ 1 9

(
2
(

n
25

)
+ 1
)

= 32
(
2
(

n
52

)
+ 1
)

...
...

...
...

i = k − 1 3k−1 2
(

n
5k−1

)
+ 1 3k−1

(
2
(

n
5k−1

)
+ 1
)

i = k 3k 4 3k (4)

Thus the total time is the sum of the levels:

T (n) = 4(3k) +

k−1∑
i=0

3i
(

2
(n

5i

)
+ 1
)

= 4(3k) + 2n

k−1∑
i=0

(
3

5

)i

+

k−1∑
i=0

3i

= 4(3k) + 2n

(
1−

(
3
5

)k
1− 3

5

)
+

(
3k − 1

3− 1

)

= 4(3k) + 2n

(
5

2

)(
1−

(
3

5

)k
)

+
1

2

(
3k − 1

)
= 4(3log5 n) + 5n− 5n

(
3

5

)log5 n

+
1

2

(
3log5 n

)
− 1

2

=
9

2
(3log5 n) + 5n− 5n

(
3log5 n

5log5 n

)
− 1

2

=
9

2
(3log5 n) + 5n− 5

(
3log5 n

)
− 1

2

= −1

2
(3log5 n) + 5n− 1

2

= 5n− 1

2
(3log5 n + 1)

5

Note that results from this equation will agree with the calculations we did
earlier. For example:

T (5) = 5(5)− 1

2
(3log5 5 + 1) = 25− 1

2
(3 + 1) = 23

And:

T (25) = 5(25)− 1

2
(3log5 25 + 1) = 125− 1

2
(9 + 1) = 120

While this formula is exact only for n = 5k it gives us a good approximation
in other cases:

T (17) = 5(17)− 1

2
(3log5 17 + 1) ≈ 81.04

Here is a graph of T (n) as well as these points:

5 10 15 20 25 30

50

100

150 T (n)

6

As far as time complexity observe that:

T (n) = 5n− 1

2
(3log5 n + 1) < 5n

Thus T (n) = O(n).

And observe that since log5 n < log3 n we have 3log5 n < 3log3 n = n so that
for n ≥ 1 we have:

T (n) = 5n− 1

2
(3log5 n + 1) > 5n− 1

2
(n + 1) =

9

2
n− 1

2
≥ 4n

Thus T (n) = Ω(n) and together we have T (n) = Θ(n).

This corresponds to the picture in the sense that it certainly appears that
Bn ≤ T (n) ≤ Cn for some B,C > 0 and for sufficiently large n. In fact here
is the same plot but with 4n and 5n plotted as well:

5 10 15 20 25 30

50

100

150 T (n)

�

7

By popular demand here is a second tree example but more streamlined.

Example 3.2. Consider the recurrence relation given here:

T (n) = 2T (n/2) +
√
n with T (1) = 3

For the sake of simplicity assume n = 2k for some k. During the growth of
the tree the nodes in level i are T (n/2i) before being replaced by

√
n/2i as

the tree grows down. The leaf level occurs when n/2i = 1 or i = lg n = k.

Thus in total there are k + 1 levels, 0, 1, ..., k + 1 and in those levels:

Level Count Time Total Time

i = 0 1
√
n 1

√
n =
√

1n

i = 1 2
√

n/2 2
√
n/2 =

√
2n

i = 1 4
√

n/4 4
√
n/4 =

√
4n

...
...

...
...

i = k − 1 2k−1
√
n/2k−1 2k−1

√
n/2k−1 =

√
2k−1n

i = k 2k 3 2k (3)

Thus the total time is:

T (n) = 3
(
2k
)

+

k−1∑
i=0

√
2in

= 3n +
√
n

k−1∑
i=0

(2i)1/2

= 3n +
√
n

k−1∑
i=0

(21/2)i

= 3n +
√
n

(
(21/2)k − 1

21/2 − 1

)
= 3n +

√
n

(
(2k)1/2 − 1

21/2 − 1

)
= 3n +

√
n

(√
n− 1

21/2 − 1

)
= 3n +

1√
2− 1

(n−
√
n)

= 3n + (
√

2 + 1)(n−
√
n)

This checks with the recurrence relation since for example the recurence
relation gives us T (2) = 2T (1) +

√
2 = 6 +

√
2 and this formula gives us

8

T (2) = 3(2) + (
√

2 + 1)(2 −
√

2) = 6 +
√

2 and for example the recurrence
relation gives us T (4) = 2T (2) +

√
4 = 2(6 +

√
2) + 2 = 14 + 2

√
2 and this

formula gives us T (4) = 3(4) + (
√

2 + 1)(4−
√

4) = 14 + 2
√

2.

�

9

4 Thoughts, Problems, Ideas

1. For the example T (n) = 3T (n/5) + (2n + 1) with T (1) = 4 show that
calculating T (125) directly (using the recurrence relation) and using the
formula developed in the notes yields the same results.

2. For the example T (n) = 2T (n/5) + (2n + 3) with T (1) = 4 draw the
complete tree for n = 125 and fill in the values. What is the total time?

3. Suppose T (n) = 2T (n/5) + (2n + 1) and T (1) = 2. Emulate the example
in the notes in the following sense:

(a) Calculate T (n) for a few values which are nice powers (of what?)

(b) Draw a generic version of the associated tree.

(c) Calculate the number of levels in the tree.

(d) Calculate the number of entries in each level.

(e) Separately for each non-leaf level calculate the total time in each
entry and then add these to get the total time each non-leaf level.

(f) Calculate the total time in the leaf-level.

(g) Write down a sum for the total time in the tree.

(h) Simplify this sum to get the total time T (n).

(i) Use this T (n) to check your values from (a).

(j) Calculate the O(n) time complexity from T (n).

(k) Calculate the time complexity from the Master Theorem.

(l) Rejoice at the beauty of equality.

4. Repeat the previous problem with T (n) = 2T (n/4) +
√
n and T (1) = 4.

5. Repeat the previous problem with T (n) = 3T (n/3) + 2 and T (1) = 7.

10

	Introduction
	Solving Using Digging Down
	Solving Using Trees
	Thoughts, Problems, Ideas

