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1 Proofs

1.1 Weak Induction

To prove ∀n ≥ n0 P (n) we first prove P (n0) (this is the bae caes) and then we
prove ∀k ≥ n0 P (k)→ P (k + 1) (this is the inductive step). The assumption of
P (k) in the inductive step is the inductive hypothesis.

1.2 Strong Induction

The inductive hypothesis becomes ∀k ≥ n0 , P (n0) ∧ P (n0 + 1) ∧ ... ∧ P (k) →
P (k + 1). We often need more than one base case. The quantify we need can
be determined by examining how far back we go in the inductive step. If the
inductive step refers back to P (j) for j < k then we must have j ≥ n0.

1.3 Constructive Induction

Useful when we have an idea (a guess) about a formula but we need to figure out
some constants. We verify our guess while simultaneously finding the constants.

Example 1.1. Suppose we suspect that:

n∑
k=1

k = an2 + bn

To use constructive induction we first note that if this is going to be true for
the base case then we need:

1 =

1∑
k=1

k = a(1)2 + b(1)

Thus we know a+ b = 1 and so b = 1− a. Thus we can now suspect that:

n∑
k=1

k = an2 + (1− a)n

Then we note that if this is going to be true for the inductive step then we need:

If
n∑

k=1

k = an2 + (1− a)n then
n+1∑
k=1

k = a(n+ 1)2 + (1− a)(n+ 1).

Well observe that:

n+1∑
k=1

k =

[
n∑

k=1

k

]
+ (n+ 1) = an2 + (1− a)n+ (n+ 1)

Thus we need:
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an2 + (1− a)n+ (n+ 1) = a(n+ 1)2 + (1− a)(n+ 1)

an2 + n− an+ n+ 1 = an2 + 2an+ a+ n− an+ 1− a
an2 + (2− a)n+ 1 = an2 + (a+ 1)n+ 1

(2− a)n = (a+ 1)n

2− a = a+ 1

2a = 1

a =
1

2

Thus we have:

n∑
k=1

k =
1

2
n2 +

1

2
n

This is our familiar:

n∑
k=1

k =
n(n+ 1)

2

There are two issues that often get questioned and while they’re not issues we’ll
really worry about it’s certainly worth addressing them.
First, where does our guess come from? This is part art and part science and
depends highly on the situation. Let’s consider our example sum but let’s start
at 0:

n∑
k=0

k

Suppose we do some tests:

0∑
k=0

k = 0

1∑
k=0

k = 1

5∑
k=0

k = 15

10∑
k=0

k = 55

If we plot these we perhaps guess that the result is quadratic with a y-intercept
of 0:
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Because of this we might guess that:

n∑
k=0

k = an2 + bn

Second, what happens if we make a wrong guess? Let’s see. Suppose we suspect
it’s cubic instead:

n∑
k=0

k = an3 + bn

The base case n = 0 tells us 0 = 0 + 0 or nothing.
The case n = 1 tells us that 1 = a+ b so b = 1− a as before. So far so good.
Thus we can now suspect that:

n∑
k=1

k = an3 + (1− a)n

Then we note that if this is going to be true for the inductive step then we need:

If
n∑

k=1

k = 3n2 + (1− a)n then
n+1∑
k=1

k = a(n+ 1)3 + (1− a)(n+ 1).

Well observe that:

n+1∑
k=1

k =

[
n∑

k=1

k

]
+ (n+ 1) = an3 + (1− a)n+ (n+ 1)

Thus we need:
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an3 + (1− a)n+ (n+ 1) = a(n+ 1)3 + (1− a)(n+ 1)

an3 + (2− a)n+ 1 = a(n3 + 3n2 + 3n+ 1) + (n− an+ 1− a)

This needs to be true for all n ≥ 0 which basically means they need to be equal
as polynomials with n being the variable. But we have a problem because there
is an n2 on the right but not on the left. Thus we have chosen...poorly.

1.4 Structural Induction

Used when we are trying to prove some property about all items in a set where
the set is defined recursively. We prove that the property holds for the base
items and then we prove that the recursive addition of new items preserves the
property.

Example 1.2. We define a binary tree as following:

• A single node is a binary tree.

• If B1 and B2 are binary trees then a single node as parent to B1 and B2

is also a binary tree.

Let’s show that the number of nodes in a binary tree N(T ) satisfies N(T ) ≤
2H(T )+1 − 1 where H(t) is the height.
Base Case: A binary tree T consisting of a single node has N(t) = 1 and
H(T ) = 0 and hence satisfies 1 ≤ 20+1 − 1.
Inductive step: Suppose T is constructed by taking a single node as parent to
B1 and B2 and suppose we have:

N(B1) ≤ 2H(B1)+1 − 1 and N(B2) ≤ 2H(B2)+1 − 1

We claim that:

N(T ) ≤ 2H(T )+1 − 1

To see this, note thatN(T ) = 1+N(B1)+N(B2) andH(T ) = 1+max{H(B1), H(B2)}.
From here note that:

N(T ) = 1 +N(B1) +N(B2)

≤ 1 + 2H(B1)+1 − 1 + 2H(B2)+1 − 1

≤ 2max{H(B1),H(B2)}+1 + 2max{H(B1),H(B2)}+1 − 1

≤ 2
(

2max{H(B1),H(B2)}+1
)
− 1

≤ 2max{H(B1),H(B2)}+1+1 − 1

≤ 2H(T )+1 − 1

This is as desired.
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2 Combinatorics

2.1 Permutations and Combinations

Basic formulas:

n objects, permute k =
n!

(n− k)!

n objects, choose k =
n!

k!(n− k)!

n categories, permute k = nk

2.2 Probability and Expected Value

Suppose X is a random variable which takes on numerical outcomes x1, ..., xn
with respective probabilities p1, ..., pn then the expected value of X is:

E(X) = p1x1 + ...+ pnxn

Example 2.1. Suppose an algorithm sorts the values in a list and returns the
alternating sum/difference of the result. For example if you give it [5, 8, 4, 1] it
first sorts to get [1, 4, 5, 8] and then returns 1− 4 + 5− 8 = −6.
If the possible inputs to the algorithm are [5, 8, 4, 1], [10, 20, 0], [2, 1] and [0, 5, 2,−3]
all equally likely, what is the expected outcome?
Well there are four outcomes:

[5, 8, 4, 1]⇒ [1, 4, 5, 8]⇒ 1− 4 + 5− 8 = −6

[10, 20, 0]⇒ [0, 10, 20]⇒ 0− 10 + 20 = 10

[2, 1]⇒ [1, 2]⇒ 1− 2 = −1

[0, 5, 2,−3]⇒ [−3, 0, 2, 5]⇒ −3− 0 + 2− 5 = −6

Since all are equally likely they have probabilities 0.25 each and so the expected
value is:

0.25(−6) + 0.25(10) + 0.25(−1) + 0.25(−6) = ...
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3 Calculus Thread

3.1 Sequences and Sums

Some basic sums:

n∑
i=1

1 = n

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=0

ri =
rn+1 − 1

r − 1

n∑
i=0

2i = 2n+1 − 1

n∑
i=1

i2i = (n− 1)2n+1 + 2

Note: Most of these should be familiar. the only one that might not be is the
final one.

Proof. We have:

n∑
i=1

i2i = 2

[
n∑

i=1

i2i

]
−

[
n∑

i=1

i2i

]

=

[
n∑

i=1

i2i+1

]
−

[
n∑

i=1

i2i

]
=

[
1 · 22 + 2 · 23 + ...+ (n− 1)2n + n2n+1

]
−
[
1 · 21 + 2 · 22 + ...+ (n− 1)2n−1 + n2n

]
= n2n+1 − 2n − 2n−1 − ...− 22 − 21

= n2n+1 − (2n + 2n−1 + ...+ 21)

= n2n+1 − (2n+1 − 2)

= (n− 1)2n+1 + 2

QED

These can be used in various ways:
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Example 3.1. Consider the sum:

n∑
i=2

(
2i+ 2−i + i2

)
We split it up:

n∑
i=2

(
2i+ 2−i + i2

)
=

n∑
i=2

2i+

n∑
i=2

2−i +

n∑
i=2

i2

Separately these are:

n∑
i=2

2i = 2

n∑
i=2

i = 2

[[
n∑

i=1

i

]
− 1

]
= 2

[
n(n+ 1)

2
− 1

]
n∑

i=2

2−i =

n∑
i=2

(
1

2

)i

=

[
n∑

i=0

(
1

2

)i
]
− 1− 1

2
=

[(
1
2

)n+1 − 1
1
2 − 1

]
− 1

2

n∑
i=2

i2 =

[
n∑

i=1

i2

]
− 1 =

[
n(n+ 1)(2n+ 1)

6

]
− 1

The result is then the sum of these:

2

[
n(n+ 1)

2
− 1

]
+

[(
1
2

)n+1 − 1
1
2 − 1

]
− 1

2
+

[
n(n+ 1)(2n+ 1)

6

]
− 1
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3.2 L’hôpital’s Rule

It will be useful to remember two versions of L’hôpital’s Rule:

Theorem 3.2.1. Suppose we are attempting to evaluate:

lim
x→∞

f(x)

g(x)

• If lim
x→∞

f(x) = lim
x→∞

g(x) = 0 then:

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

• If lim
x→∞

f(x) = lim
x→∞

g(x) =∞ then:

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

Note 3.2.1. The theorem is valid for sequences as well as functions, we just
treat f and g as continuous functions of n.

Example 3.2. We have:

lim
n→∞

n

5n+ 1
= lim

n→∞

1

5
=

1

5

Oftentimes we’ll need to use it repeatedly.

Example 3.3. We use it five times in a row here:

lim
n→∞

2n

n5
= lim

n→∞

(ln 2)52n

(5)(4)(3)(2)(1)
=∞
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3.3 Manipulation of Logarithms

logb a =
logc a

logc b
(Change of Base)

logb(xy) = logb x+ logb y

logb

(
x

y

)
= logb x− logb y

logb (xp) = p logb x

Note 3.3.1. We use the Change of Base all the time when we play fast and
loose with big notation and logarithms. For example:

log n = 1
lg 10 lg n = Θ(lg n) and lg n = 1

log 10 log n = Θ(log n)

Which gives an example of why logarithms don’t matter for big notation.
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3.4 Differentiation

Some basic rules:

d

dx
xr = rxr−1 for r 6= 0

d

dx
lnx =

1

x
d

dx
ax = (ln a)ax

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x)

3.5 Integration

Some basic rules:

∫
xr =

1

r + 1
xr+1 + C for r 6= −1∫

x−1 = lnx+ C∫
u dv = uv −

∫
v du (Integration by Parts)
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3.6 Integral Bounds for Sums

Consider the following picture of a decreasing function f(x) and some rectangles
below it:

j − 1 j j + 1 n− 1 n

0.2

0.4

0.6

0.8

1

1.2

. . .

It’s clear from this picture that the sum of the areas of the rectangles is smaller
than the area under the curve from j − 1 to n. If we define ai = f(i) then the
sum of the areas of the rectangles (all have width 1) is:

(1)f(j) + (1)f(j + 1) + ...+ (1)f(n) = aj + aj+1 + ...+ an

which is clearly smaller than the area under the curve between x = j − 1 and
x = n.
Thus we have:

n∑
i=j

ai ≤
∫ n

j−1
f(x) dx

12



Likewise consider this picture with the rectangles all shifted to the right and
the same function.

j j + 1 j + 2 n n+ 1

0.2

0.4

0.6

0.8

1

1.2

. . .

The sum of the areas of the rectangles (all have width 1) doesn’t change, it still
is:

(1)f(j) + (1)f(j + 1) + ...+ (1)f(n) = aj + aj+1 + ...+ an

which is clearly greater than the area under the curve between x = j and
x = n+ 1.
Thus we have: ∫ n+1

i=j

f(x) dx ≤
n∑

i=j

ai

Together we have:

Theorem 3.6.1. As a general rule if ai (and its corresponding f(x) having
f(i) = ai) are decreasing then:∫ n+1

j

f(x) dx ≤
n∑

i=j

ai ≤
∫ n

j−1
f(x) dx

Example 3.4. Suppose we want to get integral-related bounds for:

100∑
i=3

1

i

Observe that we have: ∫ 101

3

1

x
dx ≤

100∑
i=3

1

i
≤
∫ 100

2

1

x
dx
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Calculating the left and right sides yields:

3.5166 ≈ ln(101)− ln(3) ≤
100∑
i=2

1

i
≤ ln(100)− ln(2) ≈ 3.9120

Just for reference note that:

100∑
i=3

1

i
= 3.68737751...

Warning: Note that the sum is from i = j to i = n but one of the integrals
goes from j − 1 and the other goes to n + 1. It’s entirely possible that the
function f(x) is undefined at either j−1 or n+ 1 or both in which case we need
to tweak a bit.

Example 3.5. Suppose we wanted an upper bound for:

20∑
i=1

1

i2

It might be tempting to simply use the right-hand inequality:

20∑
i=1

1

i2
≤
∫ 20

0

1

x2
dx

but the function is undefined at x = 0. While the integral may stil be (via
improper integrals) it may not be and in any case is more work than we need.
The approach is to simply separate out the first term of the sequence first:

20∑
i=1

1

i2
=

1

12
+

20∑
i=2

1

i2
≤ 1 +

∫ 20

1

1

x2
dx

Theorem 3.6.2. If an (and its corresponding f(x)) are increasing then what
would the inequalities look like?
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4 Thoughts, Problems, Ideas

1. Prove using weak induction that:

n∑
i=0

2i = 2n+1 − 1

2. Verify and find the corresponding constants using structural induction for:

n∑
i=0

3i = α3n + β

3. Define a set of graphs S by: An single node is in S and if G ∈ S then the
result of adding an edge and a new node to a node already in S is in S.
Prove that V = E + 1.

4. How many possible comparisons of the form x < y are there if x, y ∈
{a, b, c, d}?

5. How many possible comparisons of the form x−y < z are there if x, y, z ∈
{a, b, c, d, e, f, g}?

6. How many possible comparisons of the form x+y < z are there if x, y, z ∈
{a, b, c, d, e, f, g} if we assume x+ y and y + x are equivalent?

7. Suppose an algorithm adds any set of numbers given to it. If the input
to the algorithm could be one of three sets, either {1, 2, 3}, {4, 5, 1}, and
{0, 2, 3, 10}, with probabilitites 0.5, 0.3 and 0.2 respectively, what is the
expected value of the output of the algorithm?

8. Suppose algorithm A can accept any nonnegative integer and finds the
square root of its input. If the probabilities of the input being 0, 1, 2, 3, ...
are 1

2 ,
1
4 ,

1
8 ,

1
16 , ... respectively what can you say about the expected value

of the output of the algorithm?

9. Calculate the sum:

2n∑
i=2

(3i− 1)2

10. Calculate the sum:

100∑
i=3

(0.2)5i

11. Suppose b is an unknown base and you know logb 3 = α and logb 4 = β.
Calculate each of:
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logb 36, lg 3, log8
81
4

12. Calculate the derivative:

d

dx
x2 + 3xe2x

13. Calculate the integral:

∫ 1

0

xex dx

14. Calculate the integral:

∫ 4

2

lnx dx

Hint: Use IBP with u = lnx and dv = 1 dx.

15. Calculate the integral:

∫ 4

2

x lnx dx

16. Find integral-related bounds for:

20∑
i=1

1

i

17. Find integral-related bounds for:

20∑
i=1

1

i+ 3

18. Find integral-related bounds for:

100∑
i=1

1

i3

19. Find integral-related bounds for:

10∑
i=1

1√
i
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20. Calculate and write down the inequality pair that corresponds to the the-
orem for increasing functions. Show work, including pictures as necessary.

21. Find integral-related bounds for:

5∑
i=1

i+
√
i

22. Find integral-related bounds for:

5∑
i=1

ln(i)
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