CMSC 351: Rigorous Time Summary

Justin Wyss-Gallifent

September 7, 2023

I _Introductionl.
12 Time Complexity| L
[Assignments Take Time|

or Loops Take Time|
B ile Loops Take Time|
6 Conditionals Take Timel
|7 Combining|.o
8 Best and Worst-Casel,
19 Summary on Time Consideration|

1 Introduction

Exactly how to measure the time requirements of an algorithm is often a source
of confusion so here’s a brief but hopefully comprehensive explanation.

2 Time Complexity

When we discuss time complexity of code in the simplest case the code will
depend upon some n which could be the length of a list, the number of times a
loop iterates, etc. Our goal is to imagine that we could write down a function
T'(n) which tells us how much time the code takes for any given n and then find
a simple f(n) so that T'(n) = ©(f(n)) when possible, and O or §2 perhaps when
that’s all we need or all we can get.

3 Assignments Take Time

Assignments take time.

Formally speaking each assignment takes its own time:

a=0
b=20 Co
c=0 C3

The total time is ¢; + ca + ¢35 = O(1).

Of course we could argue that each assignment takes the same amount of time.
Whether this is actually true or not might be system/hardware/implementation
dependent but for time complexity it doesn’t matter.

a=0
b=20 C1
c=0 ¢

The total time is 3¢; = O(1).

Of course in light of that we could just lump it all together and suggest that all
three lines together take some constant time:

a=20
=0 C1
c=0

The total time is ¢; = O(1).

And even more informally we might just say that the actual constant doesn’t
matter so we'll call it time 1:

a=20
b=20 1
c=0

The total time is 1 = ©(1).

Note 3.0.1. We’re not saying some are right and some are wrong, it’s all a
question of what we’re measuring and how much detail we desire.

4 For Loops Take Time

Formally speaking everything takes time, including the maintenance associated
to loops. Consider this pseudocode, assuming n is given:

sum = 0 c1

for i = 1 to n ¢y a total of n times (this is the maintenance line)
// Comment O a total of n times

end

We have an initial time of ¢; and then technically speaking the for loop does
n assignments at some time cs. Note that this is not the body of the for
statement but rather this is the overhead consisting of the maintenance of the
loop; assigning i, updating, and so on.

The body of the loop is a comment which takes 0 time.
The total time is ¢; + can + (0)n = O(n).

Now then, suppose we add something inside the loop:

sum = 0O cq

for i =1 ton co a total of n times
sum = sum + i c3 a total of n times

end

Now we have time cost ¢; + can + cgn = O(n).

However here is when computer scientists get understandably sloppy. Since the
maintenance is just adding constant time cy to the body, and since constant
time doesn’t alter time complexity, generally we will ignore the contribution of
the maintenance line.

sum = 0 (1
for i =1 ton Iterates n times
sum = sum + i ¢z a total of n times

end

The total time is ¢; + csn = O(n).

Of course this is no longer entirely accurate if we’re assuming that the main-
tenance line takes time but when we’re analyzing time complexity it’s okay. If
we’re doing explicit time totals and if we wish to factor in that maintenance line
time then it’s not and we need to keep the ¢y in there.

In addition since the for loop will take some time the assignment before it,
contributing constant time, could even be ignored:

sum = 0 Meh, contributes constant time overall
=1ton Tterates n times

= sum + i c3 a total of n times

end

The total time is cgn = O(n).

Note 4.0.1. We'’re not saying some are right and some are wrong, it’s all a
question of what we’re measuring and how much detail we desire.

5 While Loops Take Time

The same is true for while loops. Consider this pseudocode:

sum = 1 cq

i=1 C2

while i <= n ¢z a total of n times (this is the maintenance line)
i =1+ 1 ¢4 a total of n times

end

The total time is ¢ + ¢a + csn + can = O(n).

Again we can be a bit more sloppy, letting the while maintenance fold into the
body of the loop and assuming all assignments take the same time:

sum = 1 c1
i=1 C1
while i <= n Iterates n times
i =1+ 1 ¢ atotal of n times
end

The total time is ¢; + ¢1 + n(c1) = O(n).

Or even more sloppy:

sum = 1 c
i=1 !

while i <= n Iterates n times
i =1+ 1 ¢ atotal of n times
end

The total time is ¢; + n(c1) = O(n).

Or even more:

sum = 1 Meh

i=1 Meh

while i <= n Iterates n times
i=1i+ 1 ¢; atotal of n times

end

The total time is n(c;) = O(n).

Note 5.0.1. We'’re not saying some are right and some are wrong, it’s all a
question of what we’re measuring and how much detail we desire.

6 Conditionals Take Time

The comparisons in a conditional also formally take time. Consider this pseu-
code, where a and b are assumed to be given.

if a<b c1
print(’hi’) co
end
Formally speaking the time this requires is:
e [f a<b passes then the time is ¢; + co.
e If a<b fails then the total time is ¢;.
Often then we’ll just say the whole thing is constant time:
if a<b

print(*hi’) c1
end

However this doesn’t mean we can just ignore the comparison all the time, it
depends in delicate situations on the body of the conditional.

if a<b e
UNKNOWN Without understanding this, can’t get rid of ¢y
end

In the next section we’ll see what happens when we start nesting things.

Note 6.0.1. We'’re not saying some are right and some are wrong, it’s all a
question of what we’re measuring and how much detail we desire.

7 Combining

Combining is when we need to be careful and attentive especially when we want
to be sloppy and especially with regards to conditionals which contain a body
operating at non-constant time.

Consider this pseucode:

if a<b c1

sum = 0 Co
for i =1 ton c3 a total of n times
sum = sum + i ¢4 a total of n times

end
end

Formally the conditional check is ¢; time no matter what and the assignment
is co. But then observe:

e If a<b passes then the total time is ¢; + co + c3n + can = O(n).
o If a<b fails then the total time is ¢; = O(1).

In this case we can’t blindly ignore the ¢; because if we did, then if a<b fails,
then we’d be suggesting that this pseudocode takes 0 time.

Of course if this conditional had more stuff before (or after) it:

print(*hi’) cs
if a<b C1
sum = 0 Co
for i =1 ton c3 a total of n times
sum = sum + i ¢4 a total of n times
end
end

The print statement is contributing constant time and so removing the ¢; does
not result in time 0 when a<b fails and therefore does not affect time complexity.

8 Best and Worst-Case

In the previous example:

print(*hi’) cs
if a<b C1
sum = 0 Co

for i =1 ton c3 a total of n times

sum = sum + i ¢4 a total of n times

end
Many resources (all over the internet) would simply say that this is O(n) but
the truth is a bit more nuanced. The reality is:

e In a best-case scenario a<b fails and the time is ¢5 4+ ¢; which is in fact
O(1). It’s also O(1) and Q(1). Of course it is also O(n) but this is being
pretty liberal.

e In a worst-case scenario a<b passes and the time is c5 4+ c¢1 + co +csn+cqn
which is in fact O(n). It’s also O(n) and Q(n).

e If anyone says casually that this is O(n) what they mean is that in the
worst case it is O(n).

9 Summary on Time Consideration

So how far can we actually simplify if we’re interested only in time complexity?
In other words, what do we need to keep?

e With loops, provided that the body is guaranteed to take nonzero time
we can ignore the maintenance line.

Example 9.1. In this example:

for i = 1 to n"2 ¢ iterates n? times
print (i) cy iterates n? times
end

We can ignore the c;:

for i =1 to n"2
print (i) cy iterates n? times
end

The (best, worst, and average) time complexity is ©(n?):

e Any line that takes constant time can be ignored provided there is other
adjacent code which takes nonzero time.

Example 9.2. In this example:

stuff = 1 c1

for i = 1 to n"2 ¢y iterates n? times
print (i) c3 iterates n? times

end

We can ignore the ¢y as before and in addition the cy:

stuff =1
for i =1 to n"2

print (i) c3 iterates n? times
end

The (best, worst, and average) time complexity is ©(n?):

e In a worst-case scenario a conditional is assumed to be true and the entire
conditional can be replaced by the time that the body takes.

Example 9.3. In this example:

if a+b<c cq
for i =1 ton co iterates n times
print(’spicy’) co iterates m times
end
end

For worst-case time complexity we can ignore the co as noted earlier
and in addition we can ignore the c;:

if a+b<c
for i =1 ton
print(’spicy’) co iterates m times
end
end

The worst-case time complexity is O(n).
e In a best-case scenario if we can guarantee that there is an input for which
the conditional fails then the entire conditional is constant time for the
conditional check so we can’t remove the conditional check carelessly.

Example 9.4. In this example:

if a+b<c cq
for i =1 ton co iterates n times
print(’spicy’) c3 iterates n times
end
end

For best-case time complexity if we know for sure that there can be
a, b, and ¢ in some input for which a+b<c fails then we cannot ignore
the ¢; but we can ignore everythign else:

if a+b<c cq
for i =1 ton
print(’spicy’)
end
end

The best-case time complexity is ©(1).
However if another command takes care of that, then we can:

Example 9.5. In this example:

print ("Hi’) 4
if a+b<c cl
for i =1 ton co iterates n times
print(’spicy’) c3 iterates n times
end
end

For best-case time complexity we can ignore the co and either the ¢y
or the ¢4:

print (’Hi’) Cy4
if at+b<c
for i =1 ton
print(’spicy’)
end
end

The best-case time complexity is ©(1).
e In an average-case scenario it’s much more delicate.

Example 9.6. Consider this example for average-case time complex-
ity:

if a+b<c cq
for i =1 ton co iterates n times
print(’spicy’) c3 iterates n times
end
end

we can ignore the ¢ as noted earlier, thus we can see this as:

if a+b<c cq
for i =1 ton
print(’spicy’) c3 iterates n times
end
end

Suppose the input is such that half the time a+b<c passes and half the
time it fails. When it fails the total time is ¢; and when it passes the
total time is ¢; 4+ c3n so the average total time is ¢; + %c;;n which is

O(n).

	Introduction
	Time Complexity
	Assignments Take Time
	For Loops Take Time
	While Loops Take Time
	Conditionals Take Time
	Combining
	Best and Worst-Case
	Summary on Time Consideration

