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1 What it Does

Sorts a list of elements on which there is a total order. Think of integers or real
numbers.

2 How it Works

We identify the smallest element in A[0,...,n-1] and swap it with the element
at index 0. At this point A[0] is (trivially) sorted and we can ignore it. We then
identify the smallest element in A[1,...n-1] and swap it with the element at
index 1. At this point A[0,1] is sorted and we can ignore it. We then identify
the smallest element in A[2,...n-1] and swap it with the element at index 2.
At this point A[0,...,2] is sorted and we can ignore it. We continue until
A[0,...,n-2] is sorted, at which point the entire list is sorted.

3 Visualization

Consider the following list:

4 3 1 8 3

We first find the smallest element in A[0,...,4]:

4 3 1 8 3

We swap it with index 0:

1 3 4 8 3

We then find the smallest element in A[1,...,4]:

1 3 4 8 3

We swap it with index 1, which does not change the result.
We then find the smallest element in A[2,...,4]:

1 3 4 8 3

We swap it with index 2:

1 3 3 8 4

We then find the smallest element in A[3,...,4]:

1 3 3 8 4

We swap it with index 3:

1 3 3 4 8

Then we are done.

2



4 Pseudocode with Time Complexity

Here is the pseudocode with time assignments:

\\ PRE: A is a list of length n.

for i = 0 to n-2 n− 1 times
minindex = i c1
for j = i+1 to n-1 n− 1− (i + 1) + 1 = n− i− 1 times.

if A[j] < A[minindex]
c2minindex = j

end

end

swap A[i] with A[minindex] c3
end

\\ POST: A is sorted.

The time required is always the same in the best-, worst-, and average-cases:

T (n) =

n−2∑
i=0

c1 +

 n−1∑
j=i+1

c2

+ c3


=

n−2∑
i=0

[c1 + (n− 1− (i + 1) + 1)c2 + c3]

=

n−2∑
i=0

[c1 + (n− 1− i)c2 + c3]

=

n−2∑
i=0

[c1 + (n− 1)c2 + c3]− c2

n−2∑
i=0

i

= (n− 2 + 1) [c1 + (n− 1)c2 + c3]− c2

(
(n− 2)(n− 1)

2

)
=

1

2
c2n

2 +

(
c1 −

1

2
c2 + c3

)
n− (c1 + c3)

= Θ(n2)

The same quick note from BubbleSort applies here with regards to labeling of
the conditional.

5 Auxiliary Space

The auxiliary space isO(1) which includes two indices, minindex and potentially
a swap variable.

6 Stability

SelectionSort is not stable. The reason for this is when SelectionSort finds a
smallest element at index minindex and swaps it with the element at index i,
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the element at index i could be moved to the right of an equal element that is
sitting between them.

7 In-Place

SelectionSort is in-place.

8 Notes

After k iterations the first k elements are correctly placed and sorted. If Selec-
tionSort were running on a very long list and it was forced to stop early this
means that some amount of the beginning of the list would be sorted but the
end would not. This is the opposite of BubbleSort, as we saw.
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9 Thoughts, Problems, Ideas

1. Fill in the summation details of the time calculations. In other words, get
an exact answer before the O step.

2. Modify SelectionSort so that after k iterations the last k elements are
correct.

3. Modify SelectionSort so that after 2k iterations the first k and last k
elements are correct. Hint: Alternate!

4. Suppose the algorithm does this instead: It first scans for any element
smaller than A[0] and when it finds one it immediately exchanges it with
A[0]. Then it tries again, repeatedly until it fails to find one. It then
repeats the process with A[1], A[2], and so on. Write the pseudocode for
this and find its worst-case O time complexity.

5. The basic premise of SelectionSort is that the for loop is selecting (hence
the name) the index of the next smallest element at each iteration, then
that smallest element is swapped into its proper position. That locating
step which takes O(n). Suppose that step is replaced by a single function
indexofsmallest(a,b) which finds the index of the smallest element be-
tween indices i and j. Suppose this new function takes time S(n).

for i = 0 to n-2 n− 1 times
minindex = indexofsmallest(i,n-1) S(n)
swapindices(i,minindex) c1

end

What would need to be true about the time requirement S(n) to make
the time complexity faster than the standard SelectionSort?

6. Modify the pseudocode so that it finds both the minindex and maxindex

during each pass and swaps those into their appropriate positions. This
is the Cocktail Sort.

7. In a worst-case scenario how many assignments does the pseudocode make?

8. Suppose a list A has an odd number of elements, so n = 2k + 1. Modify
SelectionSort to create a new function median which finds the median
of the list. How many comparisons will be necessary to find the median
of the list {5, 3, 0, 16, 8, 3, 7}?

9. Rewrite your median function from the previous question so that it will
work if A has either an even or an odd number of elements. You should
not break the code into even/odd cases and you don’t even need to check
if n is even or odd but you can use the ceiling command ceil as well as
simple arithmetic. It is enough!
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10 Python Test with Output

Code

import random

A = []

for i in range (0,10):

A.append(random.randint (0 ,100))

n = len(A)

print(A)

for i in range(0,n-1):

minindex = i

for j in range(i+1,n):

if A[j] < A[minindex ]:

minindex = j

print(’In A[’+str(i)+’,’+str(n-1)+’] the index of the

minimum is ’+str(minindex))

temp = A[i]

A[i] = A[minindex]

A[minindex] = temp

print(’Swap indices ’ + str(minindex) + ’ and ’ + str(i)

)

print(’Now: ’ + str(A))

print(A)
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Output:

[37, 89, 47, 59, 87, 23, 43, 98, 68, 30]

In A[0,9] the index of the minimum is 5

Swap indices 5 and 0

Now: [23, 89, 47, 59, 87, 37, 43, 98, 68, 30]

In A[1,9] the index of the minimum is 9

Swap indices 9 and 1

Now: [23, 30, 47, 59, 87, 37, 43, 98, 68, 89]

In A[2,9] the index of the minimum is 5

Swap indices 5 and 2

Now: [23, 30, 37, 59, 87, 47, 43, 98, 68, 89]

In A[3,9] the index of the minimum is 6

Swap indices 6 and 3

Now: [23, 30, 37, 43, 87, 47, 59, 98, 68, 89]

In A[4,9] the index of the minimum is 5

Swap indices 5 and 4

Now: [23, 30, 37, 43, 47, 87, 59, 98, 68, 89]

In A[5,9] the index of the minimum is 6

Swap indices 6 and 5

Now: [23, 30, 37, 43, 47, 59, 87, 98, 68, 89]

In A[6,9] the index of the minimum is 8

Swap indices 8 and 6

Now: [23, 30, 37, 43, 47, 59, 68, 98, 87, 89]

In A[7,9] the index of the minimum is 8

Swap indices 8 and 7

Now: [23, 30, 37, 43, 47, 59, 68, 87, 98, 89]

In A[8,9] the index of the minimum is 9

Swap indices 9 and 8

Now: [23, 30, 37, 43, 47, 59, 68, 87, 89, 98]

[23, 30, 37, 43, 47, 59, 68, 87, 89, 98]
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