CMSC 420: AVL Trees

Justin Wyss-Gallifent

February 22, 2023

12 Tree Height| . . . . . . . . ... o oo

BT Algorithml . . . . o o oot

[3.2 Worst-Case Time Complexity] . . . . . ... ... ... ..
[ Keeping_ Balance with Rotations] . . . . .. ... .........
4.1 Right Rotation] . . . . . . . . . . . . ... ...

4.3 Left-Right Rotation| . . . .. ... ... ... .......
4.4 Right-Left Rotation| . . . . . ... ... ... .......

b.1 Algorithm| . . . . ... ... oo
b.2 Worst-Case Time Complexity| . . . . . . .. ... ... ..
6 Deletionl . . . . . . ..
6.1 Algorithm| . . . . . .. ... oo
[6:27 Worst-Case Time Complexity] . . . . v o v v oo v oo v ..
[ Height Calculations|. . . . . . . . . .. .. ... ... ....




1 Definition

Binary search trees can become very unbalanced and so what we’d like to do
is keep them balanced. First of all though, we need to rigorously defined what
“balanced” means.

Definition 1.0.1. For a node v we define the balance of v:

b(v) = h(v.right) — h(v.left)

Definition 1.0.2. We say that a binary search tree satisfies the AVL balance
condition and is an AVL tree if b(v) € {—1,0,1} for all nodes v in the tree.

2 Tree Height

Theorem 2.0.1. An AVL tree with n nodes has height O(lgn).

Proof. Let N(h) be the minimum number of nodes in an AVL tree of height h.
Observe that N(0) =1 as a tree has height 0 iff it is a single node. In an AVL
tree the heights of the subtrees could be equal but we are trying to minimize
the number of nodes which means keeping the heights as small as necessary.

This means we should assume that one subtree is shorter than the other by 1,
meaning one has height h — 1 and the other h — 2.

Without loss of generality then assume that the left subtree is higher than the
right subtree, meaning the left subtree has height A — 1 and the right subtree
has height h — 2. It follows that:

N(h)=1+Nh—-1)+ N(h—-2)
And also that:
N(h—-1)>Nh-2)
From these we get the following:
NMh)=1+Nh—-1)+Nh—-2)>14+2N(h—2)>2N(h—2)

From here a pattern emerges.

e When h is even we get:

N(h) > 2N(h—2) > 2°N(h —4) > ... > 2"/2N(0) = 2"/?

Taking the lg of both sides yields:



g N(h) >

| >

And so:

h <2lgN(h)

Since N(h) is the minimum number of nodes in an AVL tree of height h
then for any AVL tree of height h if there are n nodes then N(h) < n and
so:

h <2lgn
e When h is odd the argument is similar but a bit more awkward. We’ll
omit it for now.
It follows from these two cases that h = O(lgn).
QED
Note 2.0.1. It’s possible to get a better (meaning smaller) constant than C' = 2.

If you are interested please check David Mount’s notes. I am sticking with this
proof because it is simpler.

We can now see that if we can keep the tree balanced then any operation that
is constrained by the height will be faster than for a binary search tree.

3 Search
3.1 Algorithm

At this point we reiterate that an AVL tree is a binary search tree at heart,
meaning search is exactly the same.

3.2 Worst-Case Time Complexity
Since the height of the tree satisfies O(Ign) it follows that search is also O(lgn).

4 Keeping Balance with Rotations

The tricky thing of course is preserving the balance condition when we insert
and delete. To do this we use four operations. In the following diagrams the
triangles represent arbitrary sized subtrees and the root node shown is typically
just some node, it being the root of its own subtree.



4.1 Right Rotation

Right rotation of a node works as follows:

Af

e The subtree still satisfies the BST condition:

Observe the following very important points:

A<z<B<y<(C<z<D

e The left-left subtree moves up one level.
e The left-right subtree stays at the same level.

e The right subtree moves down one level.

4.2 Left Rotation

Left rotation of a node works as follows:

Observe the following very important points:

e The subtree still satisfies the BST condition:

A<z<B<y<C<z<D

e The left subtree moves down one level.
e The right-left subtree stays at the same level.

e The right-right subtree moves up one level.



4.3 Left-Right Rotation
A left rotation on a left child followed by a right rotation on the parent.

Observe the following very important points:

e The subtree still satisfies the BST condition:
A<z<B<y<(C<z<D

e The left-left subtree stays at the same level.

e The left-right subtree gets broken up and both of the children move up
one level.

e The right subtree moves down one level.

4.4 Right-Left Rotation
A right rotation on a right child followed by a left rotation on the parent.

L2

Observe the following very important points:

e The subtree still satisfies the BST condition:

A<z<B<y<(C<z<D

e The left subtree moves down one level.

e The right-left subtree gets broken up and both of the children move up
one level.

e The right-right subtree stays at the same level.



5 Insertion

5.1 Algorithm

For insertion, we first insert as with a BST. The only nodes which may now
violate the balance condition are nodes along the path from the newly inserted
(leaf) node up to the root, so we must traverse from the newly inserted leaf up
to the root and check.

It might be tempting to believe that we have to check every node but it turns
out that if we encounter one unbalanced node and fix it, we are actually done.

It should be noted before proceeding that we insert a new leaf node. The parent
of that new leaf node is simply gaining a child. Perhaps it had another child,
perhaps not, but either way it will not violate the balance condition so really
we only need to start checking the grandparent of the newly inserted node.

There are two cases each with two subcases:
1. Left-heavy: The unbalance arises in the left subtree.
(a) Left-left heavy.

In the case where the unbalance is in the left subtree of the left
subtree a right rotation will fix the balance condition. This is shown
by the following diagram. In the leftmost tree below, subtrees A and
C extend exactly one level deeper than subtree F.

(b) Left-right heavy: In the case where the unbalance is in the right
subtree of the left subtree a left-right rotation will fix the balance
condition. This is shown by the following diagram. In the leftmost
tree below, subtrees A and C extend exactly one level deeper than
subtree F.

Note that if ¢ is the root node for the subtree C' then when we insert
into subtree C we actually insert into either the left or right subtree
of ¢. We’re not sure which, but one of those:

2. Right-heavy: The unbalance arises in the right subtree.



(a) Right-right heavy: In the case where the unbalance is in the right
subtree of the right subtree a left rotation will fix the balance condi-
tion. The argument is symmetric to above.

(b) Right-left heavy: In the case where the unbalance is in the left subtree
of the right subtree a right-left rotation will fix the balance condition.
The argument is symmetric to above.

Note 5.1.1. Notice now that in all four of these cases the balance of the root
node is 0. Additionally the height of the resulting subtree is exactly the same as
it was before the insertion. Effectively this means that all of the nodes further
up will be balanced and we do not need to fix them.

Example 5.1. An example of insertion resulting in a left-left heavy tree,
fixed by a right rotation:

— —
a Insert(4) Fb:'j*?:*? R °
N

Example 5.2. An example of insertion resulting in a left-right heavy tree,
fixed by a left-right rotation:

—t —
@ Insert(9) Hb:072:72 L
P

Example 5.3. Another example of insertion resulting in a left-left heavy
tree, fixed by a right rotation:




5.2 Worst-Case Time Complexity

The actual rebalancing operation is O(1) and only happens once. However we
may need to do O(lgn) node inspections (due to the height) in order to see if
there is an unbalanced node, thus insertion is O(lgn).

6 Deletion

6.1 Algorithm

For deletion we first delete as usual. Recall that with deletion there is a replace-
ment process which ends with either a leaf node being deleted or a non-leaf node
with one child being deleted and the single subtree being promoted.

Replacement of nodes by nodes further down the tree does not affect heights or
balances. Those are only affected once we actually delete or delete and promote.

If it is a leaf node we finally delete then it is possible that its parent is unbalanced
so we need to start checking with that parent.

If it is not a leaf node we finally delete then all the promoted nodes are safe
since their balance factors do not change. We do however need to check the
parent of the deleted node.

There are two cases each with two subcases:
1. Left-heavy: The unbalance arises in the left subtree.

(a) Left-left heavy (and maybe left-right heavy). In the case where a
deletion in the right subtree causes an unbalance in the left subtree
of the left subtree a right rotation will fix the balance condition. This
is shown by the following diagram. In the leftmost tree below, subtree
A extends exactly one level deeper than subtree E while subtree C
extends either to the same level as A or one less.



(b) Left-right heavy (but not left-left heavy). In the case where a deletion
in the right subtree causes an unbalance in the right subtree of the
left subtree (and not in the left subtree of the left subtree) a left-right
rotation will fix the balance condition. This is shown by the following
diagram for which all but the leftmost tree is exactly the same as the
left-right heavy insert case:

(@) =

Delete

2. Right-heavy: The unbalance arises in the right subtree.
(a) Right-right heavy: The argument is symmetric to above.
(b) Right-left heavy: The argument is symmetric to above.
Notice now that in all four of these cases the balance of the root node is in
{—1,0,1}. Unlike insertion the height of the resulting subtree may have changed

from what it was before the insertion. Effectively this means that we will need
to move up the tree to potentially fix the balance of those nodes.

Example 6.1. An example of deletion resulting in a left-left heavy tree
fixed by a right rotation:

—t
Delete(20)

Example 6.2. An example of deletion resulting in a left-right heavy tree
fixed by a left-right rotation:




— 7_f:_‘:> —
° Delete(20) @ ch=l=s=-2 Ty @ R °
(%
ol | olo olololRo

6.2 Worst-Case Time Complexity

We saw that the BST deletion operation is constrained by height, so that is
O(lgn) in this case. The rebalancing operation is O(1) but we have to inspect
all the way up the tree from the deletion point, and multiple rebalances may be
needed. Thus this is O(Ign).

7 Height Calculations

During this discussion we have constantly referred both to heights of subtrees
and to node balances (which are calculated from heights of subtrees).

We may wonder how we will know the heights. The answer is that we can
store them in the nodes and update them as necessary. Effectively each node
can contain the height of that node and then when insertions and deletions are
performed we update the heights accordingly.

10



	Definition
	Tree Height
	Search
	Algorithm
	Worst-Case Time Complexity

	Keeping Balance with Rotations
	Right Rotation
	Left Rotation
	Left-Right Rotation
	Right-Left Rotation

	Insertion
	Algorithm
	Worst-Case Time Complexity

	Deletion
	Algorithm
	Worst-Case Time Complexity

	Height Calculations

