
CMSC 420: Bloom Filters

Justin Wyss-Gallifent

November 30, 2023

1 Introduction . 2
2 Definition . 2
3 Insertion . 3

3.1 Algorithm . 3
3.2 Time Complexity . 3

4 Search . 4
4.1 Algorithm . 4
4.2 Time Complexity . 4

5 Why No Deletion? . 4
6 Probability of a False Positive . 5
7 Tuning and Rebuilding . 5
8 Counting Bloom Filters . 6

1

1 Introduction

All of our data structures so far have been exact, meaning that they accurately
reflect the truth of whether an item is or is not in the set. Oftentimes however it’s
sufficient to sacrifice a bit of precision for speed. Probabilistic data structures
generally do exactly this, and Bloom filters are one of the most used of these.

The reason they are called “filters” is that their primary use is as a filter before
some other process, but they are in fact structures which contain data.

2 Definition

Loosely speaking a Bloom filter is a method of storing data such that search
and insert are very fast. If you notice that delete is not included you’d be right.
We can’t delete from a bloom filter!

The trade-off is that search is imprecise in the following sense:

• If a key has been stored then search will tell us that it is. It will not lie -
there are no false negatives.

• If a key is not in the set then there is a small chance that search will tell
us that it is. In other words there might be false positives.

You might wonder why this might be useful, or even acceptable, so here are a
few examples:

• Suppose a system needs to check if a URL is a threat and therefore needs
extra security checks. We’d prefer to get “yes” answers very quickly and
a small number of false positives are acceptable. Chrome uses this.

• Suppose a database needs to check if a password is weak and inform the
user that they should change it. We’d prefer to get “yes” answers very
quickly and a small number of false positives are acceptable.

Definition 2.0.1. Given a set S of keys, a Bloom filter is composed of a bit
array B composed of m bits (think of a list indexed B[0] through B[m− 1] but
we’ll just write a string) and a set of k hash functions h1, ..., hk : K → Zm.
These hash functions do no collision management, they are basically just very
fast functions which behave as “randomly” as possible.

2

3 Insertion

3.1 Algorithm

When a key x is to be inserted we set:

B[h1(x)] = ... = B[hk(x)] = 1

Example 3.1. Here is a really trivial example. Suppose our set of keys is
Z10, our bit array has 20 bits, hence is indexed B[0] through B[19], and we
use three hash functions:

h1(x) = x mod 20

h2(x) = 3x mod 20

h3(x) = 7x mod 20

The bit array starts as:

B = 00000000000000000000

To insert the key x = 1 we calculate h1(1) = 1, h2(1) = 3, and h3(1) = 7
and so we assign bits 1,3,7 to 1:

B = 01010001000000000000

To insert the key x = 4 we calculate h1(4) = 4, h2(4) = 12, and h3(4) = 8
and so we assign bits 4,12,8 to 1:

B = 01011001100010000000

To insert the key x = 7 we calculate h1(7) = 7, h2(7) = 1, and h3(7) = 9
and so we assign bits 7,1,9 to 1. Note that 7 and 1 were already set:

B = 01011001110010000000

3.2 Time Complexity

Since k is fixed the calculation is really only dependent on the hash functions.
Since hash functions are typically very fast this then implies that insertion is,
too.

If we want a Θ time complexity then we can overlook the hashing speed and say
that the time complexity of insertion as a function of the number of elements n
in the Bloom filter is Θ(1).

3

4 Search

4.1 Algorithm

To search for a key x we simply check if:

B[h1(x)] = ... = B[hk(x)] = 1

We return “yes” if so.

Note 4.1.1. Notice that it’s entirely possible that for a key x which was never
inserted that the bits B[h1(x)],...,B[hk(x)] might equal 1 because they were set
for other keys. Such an event would yield a false positive.

On the other hand a key is certainly not in the Bloom filter iff at least one if
B[h1(x)], ..., B[hk(x)] equals 0. Thus there are no false negatives.

Example 4.1. Following off the previous example to check if the key x = 2
is in the set we observe:

B[h1(2)] = B[2] = 1

B[h2(2)] = B[6] = 0

B[h3(2)] = B[14] = 0

Since at least one of them is 0 we know that x = 2 is not in the set. This
“no” is definite.

To check if the key x = 4 is in the set we observe:

B[h1(4)] = B[8] = 1

B[h2(4)] = B[12] = 1

B[h3(4)] = B[8] = 1

Since all three are 1 we believe that x = 6 is in the set. Observe that this
might be a false positive and we have no way of knowing.

4.2 Time Complexity

Same as for insertion.

5 Why No Deletion?

There is no deletion basically because the only reasonable way to delete would
be to hash the key and then set those corresponding bits to 0. While this is
possible, the issue with this is that it starts introducing false negatives because
when deleting a key x we might zero out a bit for another key x′ and then
searching for x′ would say it’s not in the set.

4

There are other probabilistic ways to manage this such as keeping a separate
bloom filter of deleted keys but these can not only introduce further issues but
slow down a data structure which we wanted to be fast.

6 Probability of a False Positive

It used to be regularly reported that the probability of a false positive is:

p =

(
1−

(
1− 1

m

)kn
)k

This calculation shows up all over the place but is predicated on certain as-
sumptions which turn out to be false. Most living documents (like Wikipedia)
have corrected this mistake but it still shows up on older sources.

In reality the probability of a false positive is more convoluted:

p =
1

mk(n+1)

m∑
i=1

iki!
(m
i

){kn
i

}

Note 6.0.1. Here the expression
{

kn
i

}
is the Stirling number of the second

kind.

The expression
{

a
b

}
represents the number of ways to partition a set of a distinct

objects into b subsets and is calculated via:

{a
b

}
=

1

b!

b∑
i=0

(−1)i
(
b

i

)
(b− i)a

The earlier formula actually slightly underestimates the probability. Interest-
ingly people have noticed this discrepancy in real-world implementations but
have generally believed the calculation and attributed the discrepancy to imple-
mentation imperfections and biased real-world data (lol).

However that earlier formula still provides a fairly reasonable and convenient
approximation.

7 Tuning and Rebuilding

As mentioned earlier, typically when a Bloom filter is going to be implemented
we should do our best to figure out an upper bound on the number of keys we’ll
store in it (maximum n value) and what our acceptable false positive rate p is
and then we choose m and k to make this happen.

5

Of course it may happen that we underestimate how large n can get and then
when it gets too large, p gets above our acceptable level.

One solution would be to rebuild the Bloom filter using a larger upper bound
for n, but this is expensive since it would require choosing a new m and a
new k, and therefore new hash functions, and re-inserting everything. As a
consequence this should be a tactic of last resort. We should not, for example,
treat rebuilding as part of the functioning of the structure.

8 Counting Bloom Filters

A variation on the standard Bloom Filter is the Counting Bloom Filter in which
we replace the bit array by an array of nonnegative integers (counters) initialized
to 0. When we insert an object the entries are increased by 1.

Counting Bloom Filters allow for fast threshold checks, meaning we might ask
the following: Given a threshold positive integer θ and an element x, if we
examine each of h1(x), h2(x), ..., hk(x) then we can say:

• If any of the counters is less than θ then x has been stored fewer than θ
times.

• If all of the counters are greater than or equal to θ then either x has been
stored at least θ times or some of those counters have been increased by
chance. This is important because we still have the possibility of a false
positive count.

It might be tempting to allow deletion by decreasing the corresponding counters
but this is not so easy. If we attempt to delete an element we never inserted we
might find that (by chance) all the corresponding counts are positive (a false
positive count) and we might decrease them.

We might argue - if we know that x has been stored then we can delete it and
while this is true the whole point is that the Counting Bloom Filter itself is the
structure telling us if x has been stored, so this doesn’t work.

It is of course possible to modify m and k to minimize this sort of thing but the
mathematics is fairly intense.

6

	Introduction
	Definition
	Insertion
	Algorithm
	Time Complexity

	Search
	Algorithm
	Time Complexity

	Why No Deletion?
	Probability of a False Positive
	Tuning and Rebuilding
	Counting Bloom Filters

