
CMSC 420: Preliminaries

Justin Wyss-Gallifent

February 13, 2025

1 Review of Sums . 2
2 Review of Expected Value . 4
3 Review of Asymptotics . 5

3.1 Comment . 5
3.2 Definitions . 5
3.3 Goals . 5

4 Elements, Keys, Values, Etc. 6
5 Operations on Data . 6

5.1 Dictionary Operations . 6
5.2 Other Operations . 7

6 Familiar Data Structures . 7
6.1 Introduction . 7
6.2 Lists . 7
6.3 Linked Lists . 8
6.4 Max heaps . 8
6.5 Stacks . 8
6.6 Queues . 8

7 Why So Many Trees?! . 9

1

1 Review of Sums

Here are some sums which will arise frequently in this course:

n∑
i=1

1 = n

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=0

ri =
rn+1 − 1

r − 1

n∑
i=0

2i = 2n+1 − 1

n∑
i=1

i2i = (n− 1)2n+1 + 2

Note: Most of these should be familiar. the only one that might not be is the
final one.

Proof. We have:

n∑
i=1

i2i = 2

[
n∑

i=1

i2i

]
−

[
n∑

i=1

i2i

]

=

[
n∑

i=1

i2i+1

]
−

[
n∑

i=1

i2i

]
=

[
1 · 22 + 2 · 23 + ...+ (n− 1)2n + n2n+1

]
−
[
1 · 21 + 2 · 22 + ...+ (n− 1)2n−1 + n2n

]
= n2n+1 − 2n − 2n−1 − ...− 22 − 21

= n2n+1 − (2n + 2n−1 + ...+ 21)

= n2n+1 − (2n+1 − 2)

= (n− 1)2n+1 + 2

QED

These sums will appear frequently so it’s useful to know them.

2

Example 1.1. Suppose a tree of height h has the property that it is perfect,
that each node has m children and each node contains m−1 keys. How many
keys are there?

Well level-by-level we have:

Level Nodes Keys
0 1 m− 1
1 m m(m− 1)
2 m2 m2(m− 1)
...

...
h mh mh(m− 1)

Thus the number of keys equals:

h∑
i=0

mi(m− 1) = (m− 1)
mh+1 − 1

m− 1
= mh+1 − 1

Note: This exact calculation will be relevant when we talk about B-trees in
a few weeks.

Example 1.2. Consider the following pseudocode:

function mysum(n):

sum = 0

for i = 1 to n:

sum = sum + 2

if i is a power of 3:

sum = sum + i

end if

end for

end function

Let’s find a closed expression for the value of sum for any n.

Note that for each i we add 2 but when i reaches a power of 3 we add i.
Thus our sum can be thought of as:

2 + 1︸ ︷︷ ︸
i=1

+ 2︸︷︷︸
i=2

+ 2 + 3︸ ︷︷ ︸
i=3

+ 2︸︷︷︸
i=4

+ 2︸︷︷︸
i=5

+ 2︸︷︷︸
i=6

+ 2︸︷︷︸
i=7

+ 2︸︷︷︸
i=8

+ 2 + 9︸ ︷︷ ︸
i=9

+ 2︸︷︷︸
i=10

+...+ ???︸︷︷︸
i=n

This may be rewritten:

3

2 + 2 + ...+ 2︸ ︷︷ ︸
n times

+ 1 + 3 + 9 + 27 + ...︸ ︷︷ ︸
how many?

It’s not immediately obvious how many terms are in the second expression
above but it’s not hard to work out:

The second expression gains a term each time that i encounters a power of
3. For any i the highest power of 3 we have passed is 3blog3 ic (for example
when i = 10 the highest power we have passed is 3blog3 10c = 32 = 9 and for
example when i = 30 the highest power we have passed is 3blog3 30c = 33 =
27) and hence the total sum may be rewritten as:

sum = (2n) + 1 + 3 + 9 + ...+ 3blog3 nc

= 2n+

blog3 nc∑
j=0

3j

= 2n+

(
3blog3 nc+1 − 1

3− 1

)
Note: Calculations like this will be relevant when we talk about amortized
cost next week.

2 Review of Expected Value

Definition 2.0.1. Suppose an event may have outcomes X ∈ {x1, x2, ..., xn}
with probabilities p1, p2, ..., pn. Then the expected value is defined as:

E(X) =

n∑
i=1

pixi

Example 2.1. Suppose we perform one operation on a data structure, either
search, insert, or delete. Suppose there is a 10% chance we search, and search
takes 5 seconds, there is a 70% chance we insert, and insert takes 10 seconds,
and there is a 20% chance we delete, and delete takes 2 seconds. We therefore
expect a single operation to take:

0.1(5) + 0.7(10) + 0.2(2) = 7.9 seconds

Example 2.2. Ignoring the keys in a binary tree and only looking at the
structure, if we choose from amongst all binary trees with three nodes with
each equally likely, what do we expect the height to be?

In this case we can actually draw all possible three-node binary tree struc-

4

tures and simply calculate. For larger trees though, this is not so easy and
we need to bring some complicated calculations into the mix.

3 Review of Asymptotics

3.1 Comment

In general we’ll give O rather than Θ or Ω. Even though in theory Θ is better,
because Θ =⇒ O,Ω, usually the Ω aspect isn’t that relevant and can be fairly
challenging to prove.

Moreover we’ll typically stick with best-case and worst-case situations and only
touch on average-case when they are easy. What we’ll see as we progress is that
not only is the definition of average not often clear but even when it is made
clear the associated calculations can be unbearable.

3.2 Definitions

Recall the definitions:

Definition 3.2.1. We say that:

f(x) = O(g(x)) if ∃x0, C > 0 such that ∀x ≥ x0 , f(x) ≤ Cg(x)

Definition 3.2.2. We have:

f(x) = Ω(g(x)) if ∃x0, B > 0 such that ∀x ≥ x0 , f(x) ≥ Bg(x)

Definition 3.2.3. We have:

f(x) = Θ(g(x)) if ∃x0, B > 0, C > 0 such that
∀x ≥ x0 , Bg(x) ≤ f(x) ≤ Cg(x)

3.3 Goals

As a general rule, faster is better. Here is a list of some common time complex-
ities in order from fastest to slowest along with some comments on each:

• O(1): This is the best we can have. An example would be popping an
item from a stack or assigning a variable.

• O(α(n)): We’ll see this later in the course. The function α(n) is the inverse
of the Ackerman function. The Ackerman function grows unbelievably fast
and so α(n) grows very slowly. In fact α(n) < 4 for all n ≤ 10600 so for
all reasonable n the Ackerman function is “almost constant”.

• O(lg n): Pretty fast. This turns out to be the target we’ll generally go for
if we can’t hit O(1) and is often thought of as “better than linear”. This
shows up doing a binary search, for example.

• O(n): This is very common, especially when working on lists. An example
of this is a simple linear search.

5

• O(n lg n): This is one of the most common time complexities and we’ve
seen it a lot! It arises as the average case in many search algorithms such
as merge sort and heap sort. We also know that this is the best our worst-
case can get we can do when using a comparison-based sorting algorithm
on a list.

• O(nk) for k ≥ 2: This arises in many non-optimized algorithms which
work on lists and arrays. For lists, an example would be bubble sort. For
matrices, an example would be matrix multiplication. Often this is fine
for fairly small data sets.

• O(2n): Things are starting to get bad here and algorithms which have
these time complexities are usually only good for small values of n. One
example is the classic subset problem whereby we are given a set of integers
and need to determine if there is a subset which sums to 0.

4 Elements, Keys, Values, Etc.

Typically when we are storing single items such as integers or strings we will
just call them elements, such as the elements in a list.

However for most of this course the idea is that we have data, known abstractly
as the value (but it may be many values), which is indexed by a key. An example
might be all your grades (those would be the value) indexed by your UID (the
key).

We thus storing key-value pairs but the key is the critical thing in the sense that
we might search for a key (implicitly looking for the associated value), delete a
key (and its associated value), or insert a key (and some associated value).

Oftentimes therefore we’ll just work with the keys but the implicit understanding
is that there are relevant values attached to these.

5 Operations on Data

5.1 Dictionary Operations

For much of this course we will be interested in what are known as dictionary
operations. This term includes the three classic operations:

• Search: A key is given and we wish to find it in a data structure. Typ-
ically we’re looking for something associated to the key, for example an
associated value, the location of the key, how many steps it takes to find
it, and so on.

• Insert: A key and perhaps some associated value are given and we wish
to insert it into the data structure.

• Delete: A key is given and we wish to delete it from the data structure.

6

5.2 Other Operations

Later in the course we will look at some non-dictionary operations such as:

• Range queries: Find all keys (or an associated value) between two given
keys.

• Proximity queries: Find a key (or an associated value) in the data struc-
ture closest to a given key.

• Balancing operations: For example can we balance a tree?

• Node finding operations: Can we find nodes which have certain properties?

6 Familiar Data Structures

6.1 Introduction

We don’t come into this course completely ignorant of data structures. Here
are are a few familiar ones along with some comments on each.

6.2 Lists

Lists are of course one of the most common data structures but not a lot of
thought is often given into how they are implemented behind the scenes.

When we have a list of length n there are some details which need to be ironed
out. For example are the indices the keys and the list elements the values? Or
perhaps the indices are just indices and the list elements contain keys and values
and if that’s the case, perhaps the keys are sorted and perhaps not.

Example 6.1. If the indices are keys and the list elements are values then
we might have something like A = [5, 4,−3, 1, 4]. In such a case:

• Reading or writing a value associated to a key is worst-case O(1).

• Searching for a value is worst-case O(n).

• Appending, inserting, or deleting are trickier than we might imagine,
depending on how the system handles these. For example append-
ing and inserting might require memory reallocation which then takes
time. We’ll discuss this further when we talk about amortized analysis.

Example 6.2. If the indices are just indices and the list elements contain
integer keys and string values and if the list elements are sorted by the integer
keys then we might have something likeA = [[4,′ cat′], [10,′muppet′], [42,′ justin′]].
In such a case this differs from the above in that reading, writing, and search-
ing requires finding the list element associated to a key and this is worst-case
O(lg n) via binary search.

If the list elements are not sorted then this process is worst-case O(n).

7

6.3 Linked Lists

When we have a linked list with n elements there are no indices (unlike lists)
and typically they key (and any associated values) are stored in the linked list
nodes. In such a case:

• Searching for a value is worst-case O(n).

• Reading or writing a value associated to a key is worst-case O(n).

• Insertion and deletion are each worst-case O(n) in the sense that we typ-
ically have to search for some location within the list to insert into or
delete from.

6.4 Max heaps

Max heaps are discussed at length in CMSC351. A max heap will typically have
nodes which consist of a key and associated values. In such a case since a max
heap is a complete binary tree searching is worst-case O(lg n), as are insertion
and deletion.

6.5 Stacks

Stacks are quite a bit different because they do not facilitate insertion and
deletion from internal locations. Instead we only have:

• Push: This is typically worst-case O(1). We say “typically” because this
is perhaps not as obvious as we might like as it can depend greatly on the
implementation of the stack. If it is implemented as a standard list then
reallocation comes into play as with reguar lists but if it is implemented
as a linked list then there are no such issues.

• Pop: Same result as push.

• Searching is worst-case O(n) since we might have to go through the entire
stack to find our desired key.

6.6 Queues

Queues are typically implemented as linked lists because if we use a standard
list the dequeue operation takes some fiddling and because we also have to deal
with reallocation costs.

Assuming we use a linked list:

• Enqueue: This is worst-case O(1) with the same caveats as with stacks.

• Dequeue: This is worst-case O(1), ditto.

• Search: As with stacks.

8

7 Why So Many Trees?!

One observation (possibly a complaint!) about this course is that we study so
many trees. This may seem frustrating but the reality of the situation is that
trees are basically the most fundamental data structure other than simple lists,
queues, etc.

As a general rule, trees handle data quickly while still being easy to understand,
visualize, and code. In addition they are easy to modify which leads to the
plethora of trees we study in this course.

I have however endeavored to add a variety of other data structures to keep
things fresh!

9

	Review of Sums
	Review of Expected Value
	Review of Asymptotics
	Comment
	Definitions
	Goals

	Elements, Keys, Values, Etc.
	Operations on Data
	Dictionary Operations
	Other Operations

	Familiar Data Structures
	Introduction
	Lists
	Linked Lists
	Max heaps
	Stacks
	Queues

	Why So Many Trees?!

