
CMSC 420: Splay Trees

Justin Wyss-Gallifent

April 12, 2023

1 Introduction . 2
2 Applications . 2
3 Overview . 2
4 Splay . 3

4.1 Introduction . 3
4.2 Zig . 3
4.3 Zig-Zig . 3
4.4 Zig-Zag . 4
4.5 Implementing Splay . 4

5 Search . 6
5.1 Algorithm . 6
5.2 Time Complexity . 6

6 Insert . 6
6.1 Insertion Note . 6
6.2 Algorithm 1 . 6
6.3 Algorithm 2 . 8
6.4 Time Complexity . 8

7 Delete . 8
7.1 Deletion Note . 8
7.2 Algorithm 1 . 8
7.3 Algorithm 2 . 10
7.4 Time Complexity . 10

8 Time Complexity . 10
8.1 Introduction . 10
8.2 Average Case Amortized Analysis 10
8.3 Worst Case . 11

1

1 Introduction

Wouldn’t it be nice if we could create a binary search tree which somehow tended
stay balanced and did so without a lot of maintenance but didn’t require storing
any balance information to do so? This may seem impossible, but it’s not!

2 Applications

Splay trees are used:

• in Windows NT to manage files; In a filesystem the keys are the filenames
and the values are the locations (on disk, in memory, etc.) As files are
created and deleted we want to be able to insert and delete them into our
tree quickly. Moreover it’s reasonable to ask that the files we access most
often ought to be close to the top of the tree.

• In the sed string editor. This is a Unix utility which (broadly speaking)
processes files line-by-line and applies rules to strings, such as “replace x
by y”. Because it might handle very large files the editor builds a tree
in which the keys are the strings it needs to work on and the values are
the rules it needs to apply. In that sense we want to be able to access the
rules as quickly as possible and the rules we use most often ought to be
close to the top of the tree.

3 Overview

Splay trees (1985) are binary search trees which are fascinating because:

• They tend to balance themselves. Just to be clear - they are not balanced
in the sense that AVL trees are balanced, but rather that they restructure
themselves they are more likely to be balanced than just using a BST.

• The contain no balance information.

• The time complexity of search, insert, and delete is average case O(lg n)
amortized time. Recall that this means that while we may have expensive
operations we will have enough cheap operations to “save up” for the
expensive ones.

You might wonder how this happens - if no balance information is saved, how
does the tree tend to balance itself?

The trick is this: When we search, insert, and delete, we stir up the tree in a
manner which tends to balance it out, meaning on average the height is Θ(lg n).
In addition this stirring is done in a manner which tends to bring frequently
accessed nodes close to the root, meaning that frequently accessed nodes tend
to be more quickly accessed.

2

Not only is this interesting, it’s practical, because it makes sense that frequently-
accessed elements should be close to the root and hence quick (cheap!) to access.

4 Splay

4.1 Introduction

Given a target key (which may or may not exist in the tree), this is what splay
does: We first search for the node containing the target key just as with any
binary search tree. If we find it, great, otherwise we find the last node before we
fall out of the tree. We then embark upon a series of operations which brings
the found node to the root.

Appreciate that if the target key is not in the tree the splay operation still does
something! In such a case as a result of how binary search trees works it brings
either the inorder predecessor or successor to the root.

These splay operations are as follows. They are all familiar to you, they just
get new names here:

4.2 Zig

Zig is used when the target node x is the left or right child of the root p. Zig is
effectively just a left or right rotation and will bring x to the root. If x is the
left child of p, rotate right at p. If x is the right child of p, rotate left at p. If
Zig is ever done, it will be the last operation.

p

x

y =⇒
Zig!

x

p

and

p

x

=⇒
Zig!

x

p

y

4.3 Zig-Zig

Zig-Zig is used when the target node x has parent p and grandparent g and x
is the left-left or right-right grandchild. Zig-Zig is effectively just two rotations
and will bring x to g’s position. If x is the left child of p which is the left child
of g, rotate right at g and then right at p. If x is the right child of p which is
the right child of g, rotate left at g and then left at p.

g

p

x

y

=⇒
Zig!

p

x g

y =⇒
Zig!

x

p

g

and

3

g

p

x

x

=⇒
Zig!

p

g x

x =⇒
Zig!

x

p

g

4.4 Zig-Zag

Zig-Zag is used when the target node x has parent p and grandparent g and x
is the left-right or right-left grandchild. Zig-Zag is effectively just two rotations
and will bring x to g’s position. If x is the left child of p which is the right child
of g, rotate right at p and then left at g. If x is the right child of p which is the
left child of g, rotate left at p and then right at g.

g

p

x

x

=⇒
Zig!

g

x

p

y

=⇒
Zag!

x

p g

and

g

p

x

y

=⇒
Zig!

g

x

p

x

=⇒
Zag!

x

g p

4.5 Implementing Splay

Definition 4.5.1. We say that we splay a node when that node is not the root
and we wish to transport it to the root. We basically ask:

(a) Is x the root’s child? If so, Zig.

(b) Is x a left-left or right-right child? If so, Zig-Zig.

(c) Is x a left-right or right-left child? If so, Zig-Zag.

(d) Is x at the root? If not, go back to (a).

Note 4.5.1. These operations are mutually exclusive in the sense that only one
will apply at any time.

4

Example 4.1. Let’s apply splay to the node containing 57. Notice how
unbalanced this tree is at the start and how balanced it is at the end!

30

10 50

60

55

57

Since 57 is the right child of 55 which is the left child of 60 we Zig-Zag.
Specifically we rotate left at 55 and then rotate right at 60:

30

10 50

60

55

57

x

=⇒ 30

10 50

60

57

55

y

=⇒ 30

10 50

57

55 60

Since 57 is the right child of 50 which is the right child of 30 we Zig-Zig.
Specifically we rotate left at 30 and then we rotate left at 50:

30

10 50

57

55 60

x

=⇒ 50

30

10

57

55 60

x

=⇒ 57

50

30

10

55

60

Notice that at the start the distances of the keys to the root were: 30
(distance 0), 10, 50 (distance 1), 60 (distance 2), 55 (distance 3), and 57
(distance 4).

At the end the distances of the keys to the root were: 57 (distance 0), 50, 60
(distance 1), 30, 55 (distance 2), and 10 (distance 3).

Most of the close nodes remain close, the one exception being 10.

5

5 Search

5.1 Algorithm

For search we first call splay on the target key. The result is either that the
target key or its inorder predecessor or successor is at the root. We then respond
appropriately, for example if the target key is not the root then we might error.

There are two things of note here. First, assuming that the target is in the tree
this will bring it to the root. This is a feature (not a bug!) in the sense that it
suggests that a key we’re interested in ought to be close to the root and quick
to access. Note that elements previously close to the root will tend to stay close
to the root.

Second, if the target is not in the tree you may notice that we have now re-
organized the tree anyway. There are two positive spins we can put on this,
primarily that it will reorganize the tree a bit, which is possibly good from a
balance perspective, but also that at least we have brought something possibly
meaningful to the root which may be useful later.

5.2 Time Complexity

See in the later section.

6 Insert

6.1 Insertion Note

In theory we could insert as with a standard BST and be done but the desire
that splay trees tend to stay balanced insists that we shuffle the tree around a
bit as much as possible and so this will include during insertion.

6.2 Algorithm 1

Suppose we wish to insert the key x. We proceed as follows: First we call splay
on x. If x exists it will now be at the root and we can respond accordingly,
probably by throwing an error.

Otherwise the root y is either the inorder predecessor or inorder successor of x.

Suppose y is the inorder predecessor of x. This means that y’s left subtree L
has L < y and that y’s right subtree R has R > x > y.

We then create a new tree using x as the root, y and its left subtree L as x’s
left subtree and R as x’s right subtree.

Here is an illustration:

6

y < x

L R > x

=⇒

x

y

L

R

The case where y is the inorder successor is symmetric.

Note that the newly inserted element (which is possibly important) is now at
the root of the tree and quick to access.

Example 6.1. Suppose we wish to insert 59 into the following splay tree:

30

10 50

60

55

57

You may recognize this as the tree from earlier. We call splay on 59. This
hunts for 59 in the tree but gets to 57 and would fall out. Thus it brings 57
to the root. This is the same process as above, so we just show the result:

57

50

30

10

55

60

Now we observe that 57 is the inorder predecessor of 59 so we put 59 as the
new root and hang 57’s tree off it as the left child:

7

59

57

50

30

10

55

60

6.3 Algorithm 2

An alternate approach to inserting a new key is to insert it as with a standard
binary search tree and then splay it to the root.

6.4 Time Complexity

See in the later section.

7 Delete

7.1 Deletion Note

In theory we could delete as with a standard BST and be done but the desire
that splay trees tend to stay balanced insists that we shuffle the tree around a
bit as much as possible and so this will include during deletion.

7.2 Algorithm 1

Suppose we wish to delete the key x. We proceed as follows: First we call splay
on x. If x does not exist then something else will be at the root and we can
respond accordingly.

Otherwise x is at the root. Let L and R be its right and left subtrees.

If L is empty then just remove x and R is the new tree, whereas if R is empty
then remove x and L is the new tree.

If neither L nor R is empty then we call splay on x but only in the subtree
R. Since x is not there (because it’s the parent of R) and because R > x the
result will be that the new root of R, call it y, will be the inorder successor of x.
Consequently y will have no left subtree itself (because there is nothing greater
than x and smaller than y) but it will have a (possibly empty) right subtree.
We simply delete x and shift y up to its place.

8

We could also have called splay on x in the subtree L with a symmetric argu-
ment.

Here is an illustration:

x

L R

=⇒

x

L

y

R′

=⇒

y

L R′

Note that we could have done a symmetric argument, you should consider what
this would be.

Example 7.1. Let’s delete 30 from this tree:

59

57

50

30

10

55

60

First we call splay on 30 which brings it to the root, in this case via a zig-zig
and a zig:

59

57

50

30

10

55

60

=⇒ 59

50

30

10

57

55

60

=⇒ 59

30

10 50

57

55

60

=⇒ 30

10 59

50

57

55

60

Now we could either call splay on 30 in the left or right subtree. For a more
interesting result let’s call it on the right subtree. Since 30 is obviously not
in the right subtree the splay operation finds 50 before it would drop out of
the tree and it brings 50 to the root of the subtree via a zig:

9

30

10 50

59

57

55

60

Now we simply throw out 30 and use 50 as the new root:

50

10 59

57

55

60

7.3 Algorithm 2

An alternate approach to deleting a key is to delete it as with a standard binary
search tree and then splay the parent of that key (if there is one) to the root.

7.4 Time Complexity

See in the later section.

8 Time Complexity

8.1 Introduction

We have repeatedly implied that splay trees “tend to be balanced” and so in-
tuitively this suggests that search, insert, and delete should be average case
O(lg n), where n is the number of nodes, but as of now we have no formal
statement or proof of this.

8.2 Average Case Amortized Analysis

The analysis of splay tree operations in the average case sense is done via amor-
tized analysis.

Theorem 8.2.1. Essentially the idea is that if we perform M operations that

10

this will take O(M lg n) time, and therefore the amortized cost of a single op-
eration is O(lg n).

Proof. This proof is not trivial. It is done via the potential method of amortized
analysis. Versions of this exist here and there on the web, a partial proof is in
Dave Mount’s notes. We will not be covering this for now so I won’t insert the
proof here. QED

8.3 Worst Case

Although in practice it is incredibly unlikely, there is nothing stopping a splay
tree from turning into a linked list. This means that worst-case for search,
insert, and delete is O(n).

Example 8.1. If we insert n, n− 1, ... , 2, 1 the result will be a linked list.
Try it for a small n.

11

	Introduction
	Applications
	Overview
	Splay
	Introduction
	Zig
	Zig-Zig
	Zig-Zag
	Implementing Splay

	Search
	Algorithm
	Time Complexity

	Insert
	Insertion Note
	Algorithm 1
	Algorithm 2
	Time Complexity

	Delete
	Deletion Note
	Algorithm 1
	Algorithm 2
	Time Complexity

	Time Complexity
	Introduction
	Average Case Amortized Analysis
	Worst Case

