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0.1 Introduction

The idea is to use elliptic curves to factor numbers.

0.2 Elliptic Curves mod a Composite

First note that an elliptic curve equation modulo a composite number does not allow us to construct a
group. For example if we consider:

y2 ≡ x3 + 2x + 2 mod 35

We note a few problems:

• All of (4, 2), (4, 12), (4, 23) and (4, 33) are on the curve, meaning we have lines that meet the
curve too many times.

• Both (4, 12) and (9, 7) are on the curve but our addition formula in this case necessarily requires
the multiplicative inverse of 9− 4 = 5 mod 35 and this does not exist.
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0.3 Analogy for the p− 1 Factoring Method

Suppose we have an EC y2 ≡ x3 + Ax + B mod n where n = pq. Note that this is still an EC, there’s
just no underlying group structure anymore.

Suppose we pick a basepoint Pb and a large M and we attempt to find M !Pb through repeated addition
as if there were an underlying group structure:

1!Pb = Pb

2!Pb = 2(1!Pb)

3!Pb = 3(2!Pb)

...
...

It’s highly likely that we’ll encounter a situation in which we have an x2 − x1 with no multiplicative
inverse mod n, meaning gcd(x2− x1, n) 6= 1. This gcd will potentially then be our factor, assuming it’s
not n itself, for example when x2 ≡ x1 mod n.
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0.4 What’s Going On Under the EC Hood?

If a point (x, y) satisfies y2 ≡ x3 + Ax + B mod n = pq then it satisfies y2 ≡ x3 + Ax + B mod p and
y2 ≡ x3 + Ax + B mod q and in fact every equation mod n = pq will also be valid mod p and mod q,
including those where we find those multiplicative inverses which do exist mod n.

Thus as we go through our repeated addition process mod n = pq we can imagine we are going through
it mod p and mod q at the same time, in the background. We don’t need to actually do it, and we
couldn’t even if we wanted to, because we don’t know p and q.

Note that mod p and mod q these are actually group calculation since the EC does create a group mod
p and mod q.

Suppose y2 ≡ x3 + Ax + B mod p has Np points and y2 ≡ x3 + Ax + B mod q has Nq points. It’s
highly likely that Np and Nq have very different factorizations.

Suppose WLOG that Np has small factors. In that case it’s likely that Np |M ! and then there is some
positive integers k with kNp = M ! and then:

M !Pb = kNpM ! = k(NpM !) = k(∞) =∞ on y2 ≡ x3 + Ax + B mod p

In our calculation process we will probably notice this earlier than M !. Instead we’ll notice it as soon
as we try to do an addition for which yields ∞ on y2 ≡ x3 +Ax+B mod p. In addition if those many
small factors are in fact small and not too numerous then we are likly to encounter this issue fairly
early in the calculation.

Chances are also high that since Nq has a different factorization that the same addition will not result
in ∞ on y2 ≡ x3 + Ax + B mod q simply because we won’t have hit a multiplicand (repeated sum)
yielding ∞ on the mod q version just yet.

This means that at this instant in the calculation we will have some j with:

jPb =∞ on EC mod p =⇒ gcd(x2 − x1, p) 6= 1

jPb =∞ on EC mod q =⇒ gcd(x2 − x1, q) = 1

It then follows that 1 < gcd(x2 − x1, n) < n is a factor of n.
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0.5 In Practice

In practice it’s really simple:

1. Pick an EC mod n, pick a basepoint Pb, pick an upper bound M !.

2. Attempt to calculation 1!Pb, 2!Pb, ... ,M !Pb.

3. If we encounter a problem calculating a multiplicative inverse arising from a gcd(x2 − x1, n) 6= 1
then this gcd is almost certainly a factor. The only way it won’t be is if the calculation fails
simultaneously both on the EC mod p and on the EC mod q which is highly unlikely.

4. If we reach M !Pb and no problem is encountered we can either choose a larger M !, a different Pb,
or a different EC all together.

The strength in this method over the standard p− 1 method is that we have a wider variety of choices
to make.

0.6 Examples

Example:

Suppose we wish to factor n = 529019. We choose the elliptic curve y2 ≡ x3 + 5x− 5 mod 529019, the
base point Pb = (1, 1) and M = 10. We calculate:

1!(1, 1) = (1, 1)

2!(1, 1) = (14, 528966)

3!(1, 1) = (75488, 399254)

4!(1, 1) = (169486, 129530)

5!(1, 1) = (196888, 94940)

6!(1, 1) =∞

In the process of calculating 6!(1, 1) we encounter x1 and x2 with gcd(x2 − x1, 529019) = 613 and we
have a factor.

Example:

We don’t have to have just two factors, this will work for any n.

I just randomly added a 1 to the end of the above number to get n = 5290191 and fed it to Python
without changing the basepoint or M . The calculation of 7!(1, 1) fails, producing a gcd of 27.

Example:

Just for fun if we revisit the first example and use y2 ≡ x3+2x−2 mod 529019 with the same basepoint
and same M we encounter a problem much earlier:

1!(1, 1) = (1, 1)

2!(1, 1) = (132259, 198373)

3!(1, 1) =∞

In the process of calculating 3!(1, 1) we encounter x1 and x2 with gcd(x2 − x1, 529019) = 613 and we
have a factor.
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