Miller Rabin Primality Test

Justin Wyss-Gallifent

February 27, 2022

0.1	What it Does	1
0.2	Preliminaries	1
0.3	How to Apply	2
0.4	Examples	2
0.5	Why Does It Work?	4
	0.5.1 Observation 1	4
	0.5.2 Observation 2	4
	0.5.3 Observation 3	4

0.1 What it Does

A probabilistic test for primality.

0.2 Preliminaries

Theorem:

If $a \mid bc$ and gcd(a, b) = 1 then $a \mid c$.

Proof:

We know there are integers x, y with ax + by = 1 and then acx + bcy = c then since $a \mid acx$ and $a \mid bcy$ we have $a \mid c$.

General Theorem (GT):

If $x^2 \equiv +1 \mod n$ then either $x \equiv \pm 1 \mod n$ or $x \not\equiv \pm 1 \mod n$ and n is composite with $\gcd(x-1,n)$ as a factor.

Proof:

If $x \equiv \pm 1 \mod n$ we are done, so suppose $x \not\equiv \pm 1 \mod n$.

Let $d = \gcd(x-1, n)$. If d = n then $n \mid (x-1)$ and then $x \equiv 1 \mod n$, a contradiction.

If d = 1 then $n \mid (x - 1)(x + 1)$ with gcd(x - 1, n) = 1 implies that $n \mid (x + 1)$ and then $x \equiv -1$ mod n, a contradiction.

Thus 1 < d < n and so n is composite and gcd(x - 1, n) is a factor.

0.3 How to Apply

Suppose n is odd and we wish to know if it is prime. We write $n = 2^k m + 1$ with m odd. We choose some 1 < a < n - 1 and set $b_0 \equiv a^m \mod n$.

• If $b_0 \equiv \pm 1 \mod m$ then STOP, n is probably prime.

Otherwise set $b_1 \equiv b_0^2 \mod n$. Note that $b_1 \equiv a^{2m} \mod n$.

- If $b_1 \equiv +1 \mod n$ then STOP, n is composite.
- If $b_1 \equiv -1 \mod n$ then STOP, n is probably prime.

Otherwise set $b_2 \equiv b_1^2 \mod n$. Note that $b_2 \equiv a^{4m} \mod n$.

- If $b_2 \equiv +1 \mod n$ then STOP, n is composite.
- If $b_2 \equiv -1 \mod n$ then STOP, n is probably prime.

Otherwise keep going ... note that in general $b_i \equiv a^{2^i m} \mod n$.

Keep going until we reach b_{k-1} . Note that $b_{k-1} \equiv a^{2^{k-1}m} \mod n$.

- If $b_{k-1} \equiv +1 \mod n$ then STOP, n is composite.
- If $b_{k-1} \equiv -1 \mod n$ then STOP, n is probably prime.

Otherwise if neither of these is true then STOP, n is composite.

0.4 Examples

Let
$$n = 561 = 2^4 35 + 1$$
 and $a = 2$

$$b_0 \equiv 2^{35} \equiv 263 \mod 561$$

 $b_1 \equiv 263^2 \equiv 166 \mod 561$
 $b_2 \equiv 166^2 \equiv 67 \mod 561$
 $b_3 \equiv 67^2 \equiv 1 \mod 561$

Composite.

Let
$$n = 74593 = 2^52331 + 1$$
 and $a = 3$

$$b_0 \equiv 3^{2331} \equiv 74566 \mod 74593$$

 $b_1 \equiv 74566^2 \equiv 729 \mod 74593$
 $b_2 \equiv 729^2 \equiv 9290 \mod 74593$
 $b_3 \equiv 9290^2 \equiv -1 \mod 74593$

Probably Prime. It actually isn't: $74593 = 97 \cdot 769$.

Let
$$n = 98762051 = 2^{1}49381025 + 1$$
 and $a = 2$

$$b_0 \equiv 2^{49381025} \equiv -1 \mod 98762051$$

Probably Prime. It actually is.

Let
$$n = 10186669 = 2^2 2546667 + 1$$
 and $a = 2$

$$b_0 \equiv 2^{2546667} \equiv 9066525 \mod 10186669$$

 $b_1 \equiv 9066525^2 \equiv 10186668 \equiv -1 \mod 10186669$

Probably Prime. It actually is.

Let
$$n = 10234283921 = 2^4639642745 + 1$$
 and $a = 2$

$$b_0 \equiv 2^{639642745} \equiv 4179106498 \mod 10234283921$$

$$b_1 \equiv 4179106498^2 \equiv 5072761571 \mod 10234283921$$

$$b_2 \equiv 5072761571^2 \equiv 8004436438 \mod 10234283921$$

$$b_3 \equiv 8004436438^2 \equiv 5033398949 \mod 10234283921$$

Composite.

0.5 Why Does It Work?

0.5.1 Observation 1

Suppose $b_0 \equiv \pm 1 \mod n$, then observe that:

$$a^{n-1} \equiv a^{2^k m} \equiv (a^m)^{2^k} \equiv (b_0)^{2^k} \equiv (\pm 1)^{2^k} \equiv 1 \mod n$$

Then n is probably prime by FLIT.

0.5.2 Observation 2

Suppose we chug along until we hit the first $1 \le j \le k-1$ with $b_j \equiv \pm 1 \mod n$ and observe:

- If $b_j \equiv +1 \mod n$ then $b_{j-1}^2 \equiv b_j \equiv +1 \mod n$. We cannot have $b_{j-1} \equiv \pm 1 \mod n$, as this would contradict the fact that j was earliest, so by GT we must have $b_{j-1} \not\equiv \pm 1 \mod n$ and n is composite.
- If $b_j \equiv -1 \mod n$ then observe that since $k j \geq 1$ we have:

$$a^{n-1} \equiv a^{2^k m} \equiv \left(a^{2^j m}\right)^{2^{k-j}} \equiv (b_j)^{2^{k-j}} \equiv (-1)^{2^{k-j}} \equiv 1 \mod n$$

Then n is probably prime by FLIT.

0.5.3 Observation 3

If we reach b_{k-1} and neither of these are true then we have $b_{k-1} \not\equiv \pm 1 \mod n$. We claim that n is composite. If n were prime then by FLIT we would have:

$$(b_{k-1})^2 \equiv (a^{2^{k-1}m})^2 \equiv a^{2^k m} \equiv a^{n-1} \equiv 1 \mod n$$

Since $b_{k-1} \not\equiv \pm 1 \mod n$ by GT we then have n composite, a contradiction. Thus n is not prime and so it is composite.