Math 241 Spring 2012 Final Exam

- Follow the instructions as to which problem goes on which answer sheet. You may use the back of the answer sheets.
- No calculators are permitted.
- One page of notes is permitted.
- Do not evaluate integrals or simplify answers unless indicated.

Please put problem 1 on answer sheet 1

1. Let ℓ be the line with symmetric equations

$$\frac{x-1}{3} = \frac{y-2}{12} \ , \ z = 5$$

- (a) Show that the line containing the points (5,7,9) and (6,11,9) is parallel to ℓ . [5 pts]
- (b) Show that the point (1, 4, 5) is not on ℓ . [5 pts]
- (c) Find the distance between ℓ and the origin. [10 pts]

Please put problem 2 on answer sheet 2

2. (a) Show that if $\bar{F}''(t)$ exists for all t then [10 pts]

$$\frac{d}{dt} \Big[\bar{F}(t) \times \bar{F}'(t) \Big] = \bar{F}(t) \times \bar{F}''(t)$$

(b) Let C be parametrized by $\bar{r}(t) = e^t \cos t \,\hat{\imath} + e^t \sin t \,\hat{\jmath}$ for $0 \le t \le 3\pi$. Find the length of C. [20 pts]

Please put problem 3 on answer sheet 3

3. Find the curvature κ of the curve at t=0 parametrized by [20 pts]

$$\bar{r}(t) = \frac{1}{3}(1+t)^{3/2}\,\hat{\imath} + \frac{1}{3}(1-t)^{3/2}\,\hat{\jmath} + \frac{\sqrt{2}}{2}\,\hat{k}$$

Please put problem 4 on answer sheet 4

4. Find all critical points of the function $f(x,y) = x^3 + 6xy + 3y^2 - 9x$ and classify each one as [20 pts a relative maximum, relative minimum, or saddle point.

Please put problem 5 on answer sheet 5

- 5. Let $f(x, y, z) = ye^{y-x} z^2$.
 - (a) Consider the level surface S given by f(x, y, z) = 0. Find the equation of the plane [10 pts] tangent to S at the point (1, 1, -1). Write your answer in the form ax + by + cz = d.
 - (b) Find a unit vector in the direction in which f decreases most rapidly at (1, 1, -1). [5 pts]
 - (c) What is the maximal directional derivative of f at the point (1, 1, -1)? [5 pts]

Please put problem 6 on answer sheet 6

- 6. (a) Evaluate and simplify the integral $\int_0^{\sqrt{\pi}} \int_y^{\sqrt{\pi}} \sin(x^2) \ dx \ dy$ [15 pts]
 - (b) Express the volume of the solid region D bounded above by the paraboloid $z = 3 x^2 y^2$ [15 pts] and below by the plane z = -6 as an iterated integral. Evaluate and simplify.

Please put problem 7 on answer sheet 7

- 7. (a) Find $\int_C (2xy \,\hat{\imath} + x^2 \,\hat{\jmath} + 1 \,\hat{k}) \cdot d\bar{r}$ where C is any curve from (1, 1, 1) to (5, 12, 12). [10 pts]
 - (b) Let Σ be the part of $z=x^2+y^2$ below z=9 and having $y\leq 0$. Let C be the boundary (edge) of Σ with counterclockwise orientation when viewed from above. Define $\bar{F}(x,y,z)=x\,\hat{\imath}+yz\,\hat{\jmath}+y\,\hat{k}$. Apply Stokes' Theorem to the integral $\int_C \bar{F}\cdot d\bar{r}$. until you have an iterated double integral and then stop.

Please put problem 8 on answer sheet 8

- 8. (a) Let Σ be the part of the cylinder $x^2 + z^2 = 9$ above the xy-plane and between y = -1 and y = 2 with outwards orientation. Define f(x, y, z) = yz. Evaluate the surface integral $\iint_{\Sigma} f \ dS$. Proceed until you have an iterated double integral and then stop.
 - (b) Evaluate the integral $\iint_{\Sigma} \left(2x\,\hat{\imath} + 4y\,\hat{\jmath} z\,\hat{k}\right) \cdot \bar{n} \,dS$ where Σ is the sphere of radius 3 [10 pts] centered at the origin with inwards orientation.

Welcome to the End of the Exam