This test has 10 question(s) for a total of 200 points.

Instructions:

10 P.

- Number the answer sheets from 1 to 10. Write your name and section number on each answer sheet (write and sign the Honor Pledge on page 1 only).
- Answer question #1 on Answer sheet #1, question #2 on Answer sheet #2, etc.
- This is a closed book exam and calculators and electronic devices are not permitted.
- You may continue your answers on the back of the answer sheets, but please be sure to indicate that
 there is work on the back.
- Show all work in order to receive full credit. Answers that are unjustified will receive no credit.
- Simplify all answers unless otherwise indicated.

20 P. 1. Consider the line L with symmetric equations

$$\frac{x+1}{2} = \frac{y+3}{3} = -z.$$

Determine an equation for the plane containing the line L and passing through P = (1, 1, -1). Express your answer in the form ax + by + cz = d.

10 P. 2. (a) Find the point on the plane x + 2y + 5z = 10 closest to the origin.

(b) Let $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 3\mathbf{j} - 4\mathbf{k}$. Write $\mathbf{b} = \mathbf{u} + \mathbf{v}$, where \mathbf{u} is parallel to \mathbf{a} and \mathbf{v} is perpendicular to \mathbf{a} .

- 3. Consider an object with position given by $\mathbf{r}(t) = 3\cos 5t\mathbf{i} + 3\sin 5t\mathbf{j} + 2t\mathbf{k}$, where $0 \le t \le 2\pi$.
- [6 P.] (a) Compute the velocity and acceleration of the object at any time t.
- 4 P. (b) Is the velocity orthogonal to the acceleration? Justify your answer.

10 P. (c) Compute the length of the curve C parametrized by r.

10 P. (a) Compute the gradient of $f(x,y) = \sqrt{x^2 + y^2}$ at the point (3,4).

10 P. (b) Approximate $\sqrt{(2.9)^2 + (4.1)^2}$.

[20 P.] 5. Use Lagrange multipliers to find the maximum and minimum of f(x, y) = xy subject to the constraint $x^2 + 2y^2 = 1$.

20 P. 6. Let D be region in the xy-plane bounded by the curves $y = x^{1/3}$ and $y = x^3$ where $x \ge 0$ and $y \ge 0$. Compute the integral

 $\int \int_D xy \, dA.$

20 P.

7. Evaluate $\int \int_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, dS$ where $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and where Σ is the portion of the cylinder $y^2 + z^2 = 4$ between the planes x = -1 and x = 3 oriented by outward directed normal vector.

20 P.

8. Compute the surface area of the portion of the plane x+y+z=5 lying above the unit disk $x^2+y^2\leq 1$.

20 P.

9. Use spherical coordinates to compute the triple integral

$$\int \int \int_{D} z^{2} dV$$

where D is the solid region $D = \{(x, y, z) | 4 \le x^2 + y^2 + z^2 \le 9\}.$

10. Let Σ be the portion of the sphere $x^2+y^2+z^2=2$ above the plane z=1 oriented by outward directed normal vector. Let C be the boundary of Σ oriented counterclockwise as viewed from above. Let $I=\int_C y\,dx+xy\,dy+2xyz\,dz$

12 P.

(a) Evaluate I directly using a parametrization of C.

8 P.

(b) Use Stokes' Theorem to express I as a double iterated integral over some region R of the xy-plane. Do not evaluate this integral.