
1. Parts (a) and (b) are independent.

(a) Find parametric equations for the line L containing the points (−2, 0, 1) and (4,−2,−3). [10 pts]

Solution:

Since:
L = 6 i− 2 j− 4 k

we have

x = −2 + 6t

y = 0− 2t

z = 1− 4t

(b) Do the planes P0 : 2x − y + 3z = −2, and P1 : −2x − 3y + z = 6 intersect? If so, find [10 pts]
symmetric equations for the line of intersection. If not, explain why not.

Solution:

Yes since the normal vectors n1 = 2 i−1 j+3 k and n2 = −2 i−3 j+1 k are not parallel.

For the line between them we have:

L = n1 × n2 = 8 i− 8 j− 8 k

If we add the equations we get −4y + 4z = 4 so we may use z = 1 and y = 0 and then
x = − 5

2
.

The solution is therefore:

x−
(

− 5

2

)

8
=

y − 0

−8
=

z − 1

−8



2. (a) Find an equation for the plane containing the points P = (1,−3, 1), Q = (2, 2, 0), and [10 pts]
R = (−4,−1, 1).

Solution:

We have:

→
PQ = 1 i+ 5 j− 1 k
→
PR = −5 i+ 2 j+ 0 k

→
PQ×

→
PR = 2 i+ 5 j+ 27 k

So the plane is:

2(x− 1) + 5(y + 3) + 27(z − 1) = 0

Note: They don’t need to simplify but for comparison this simplifies to:

2x+ 5y + 27z = 14

(b) Find the distance between the point S = (−2, 3, 1) and the plane −4x+ y − 2z = 0. [10 pts]

Solution:

The normal vector for the plane is n = −4 i + 1 j − 2 k and a point on the plane is

P = (0, 0, 0) so then we have
→
PS = −2 i+ 3 j+ 1 k and so:

dist =
|
→
PS · n|
||n|| =

|(−2 i+ 3 j+ 1 k) · (−4 i+ 1 j− 2 k)|
|| − 4 i+ 1 j− 2 k|| =

9√
21



3. Parts (a) and (b) are independent.

(a) Compute the length of the curve C1 with parametrization [10 pts]

r(t) = 1

3
(1 + t)

3

2 i+ 1

3
(1− t)

3

2 j+ t
√
3 k for − 1

4
≤ t ≤ 1

2

Solution:

We have:

r′(t) =
1

2
(1 + t)

1

2 i− 1

2
(1− t)

1

2 j+
√
3 k

||r′(t)|| =
√

1

4
(1 + t) +

1

4
(1− t) + 3

=

√

7

2

and so:

Length =

∫ 1

2

− 1

4

√

7

2
dt =

√

7

2

(

1

2

)

−
√

7

2

(

−1

4

)

(b) Find all points (if any) where the curve C2 with the following parametrization meets the
sphere of radius 3 centered at the origin. [10 pts]

r(t) =
√
t i+

√
t+ 1 j+ t k for t ≥ 0

Solution:

The sphere has equation x2 + y2 + z2 = 9 and so we must have:

(√
t
)2

+
(√

t+ 1
)2

+ t2 = 9

t+ t+ 1 + t2 = 9

t2 + 2t− 8 = 0

(t+ 4)(t− 2) = 0

Since t ≥ 0 we have t = 2 and the point is:

r(4) =
√
2 i+

√
3 j+ 2 k

which is the point:
(√

2,
√
3, 2
)



4. Consider the curve parameterized by r(t) = cos3 t i+ sin3 t j.

(a) Find the tangent vector T(t). [12 pts]

Solution:

We have:
r′(t) = −3 sin t cos2 t i+ 3 sin2 t cos t j

Noting that:

||r′(t)|| =
√

9 sin2 cos4 t+ 9 sin4 cos2 t

= 3 sin t cos t
√

cos2 t+ sin2 t

= 3 sin t cos t

We then have:

T(t) =
r′(t)

||r′(t)|| = − cos t i+ sin t j

(b) Find the normal vector N(t). [8 pts]

Solution:

We have:
T′(t) = sin t i+ cos t j

noting that:
||T′(t)|| = 1

we then have:
N(t) = sin t i+ cos t j



5. Let f(x, y, z) = z2 − 8
√

x2 − 3y. Consider the S surface with equation f(x, y, z) = 0.

(a) Find gradf . [5 pts]

Solution:

We have:
∇f = −4(x2 − 3y)−

1

2 (2x) i− 4(x2 − 3y)−
1

2 (−3) j+ 2z k

(b) Find an equation of the plane tangent to the level surface for f at (5, 3, 2). [5 pts]

Solution:

Since:

∇f(5, 3, 2) = −4(25− 9)−
1

2 (10) i− 4(25− 9)−
1

2 (−3) j+ 4 k

= −10 i+ 3 j+ 4 k

So the plane has equation:

−10(x− 5) + 3(y − 3) + 4(z − 2) = 0

(c) Find Duf at (5, 3, 2) where u is pointing in the direction 1 i+ 2 j− 3 k. [5 pts]

Solution:

We have:

u =
1√
14

(1 i+ 2 j− 3 k)

and so:

Duf(5, 3, 2) =
1√
14

(1 i+ 2 j− 3 k) · (−10 i+ 3 j+ 4 k)

=
1√
14

(−10 + 6− 12)

(d) Find the smallest value of Duf at (5, 3, 2). [5 pts]

Solution:

This would be:
−||∇f(5, 3, 2)|| = −

√
100 + 9 + 16



6. Let f(x, y) = x4 + y2.

(a) Use Lagrange Multipliers to find the maximum and minimum of f(x, y) subject to the [15 pts]
constraint x2 + y2 = 1.

Solution:

We set g(x, y) = x2 + y2 and solve the system:

4x3 = λ2x

2y = λ2y

x2 + y2 = 1

Note that x = 0 satisfies the first and yields y = ±1 in the third, and this also satisfies
the second. Thus we have (0,±1).

Note that y = 0 satisfies the second and yields x = ±1 in the third, and this also satisfies
the first. Thus we have (±1, 0).

If neither is 0 then solving the first and second for λ and equating yields 2x2 = 1 or

x = ±
√
2

2
which in the third yields ±

√
2

2
.

Thus we have eight points which we check: Checking:

f(1, 0) = f(−1, 0) = f(0, 1) = f(0,−1) = 1

and:

f

(

±
√
2

2
,±

√
2

2

)

=
3

4

So the maximum is 1 and the minimum is 3

4
.

(b) Find the maximum and minimum of f(x, y) subject to the constraint x2 + y2 ≤ 1. [5 pts]

Solution: We have fx = 2x and fy = 2y which yields critical point (0, 0). Noting that
f(0, 0) = 0 and that the maximum and minimum on the boundary were determined we
still have a maximum of 1 and now a minimum of 0.



7. Use the change of variables u = y − x and v = y + x to evaluate the double integral [20 pts]
∫∫

R

(y − x) sin
(

(y + x)3
)

dA

where R is the triangle with vertices (0, 0), (2, 2) and (0, 4).

Solution: The region looks like:

x

y

The sides of the triangle are y = x, y = 4− x and x = 0.

• Rewriting the first two as y − x = 0, y + x = 4 yields u = 0 and v = 4.

• The COV yields x = 1

2
(v − u) and y = 1

2
(u+ v) so x = 0 yields 1

2
(v − u) = 0 or v = u.

Thus the new region S is:

u

v

The Jacobian of the change of variables is:

J(x, y) =

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

=

∣

∣

∣

∣

− 1

2

1

2
1

2

1

2

∣

∣

∣

∣

= −1

2

Thus we have:
∫∫

R

(y − x) sin
(

(y + x)3
)

dA =

∫∫

S

u sin(v3)

∣

∣

∣

∣

−1

2

∣

∣

∣

∣

dA

=
1

2

∫

4

0

∫ v

0

u sin(v3) du dv

=
1

4

∫

4

0

u2 sin(v3)

∣

∣

∣

∣

v

0

dv

=
1

4

∫

4

0

v2 sin(v3) dv

= − 1

12
cos(v3)

∣

∣

∣

∣

4

0

= − 1

12
(cos(64)− cos(0))



8. Find the volume of the solid region bounded above by the sphere x2 + y2 + z2 = 8 and below [20 pts]
by the paraboloid 2z = x2 + y2.

Solution:

The solid is the region above the paraboloid and below the sphere. In cylindrical the sphere
is r2 + z2 = 8 or (the top half is) z =

√
8− r2 and the paraboloid is 2z = r2 or z = 1

2
r2.

The two meet when:

r2 + z2 = 8

2z + z2 = 8

z2 + 2z − 8 = 0

(z − 2)(z + 4) = 0

Since z ≥ 0 we have z = 2 and so r2 = 4 so r = 2.

The volume therefore is:

Volume =

∫

2π

0

∫

2

0

[

√

8− r2 − 1

2
r2
]

r dr dθ

=

∫

2π

0

∫

2

0

r
√

8− r2 − 1

2
r3 dr dθ

=

∫

2π

0

−1

3
(8− r2)

3

2 − 1

8
r4
∣

∣

∣

∣

2

0

dθ

=

∫

2π

0

[

−1

3
(4)

3

2 − 1

8
(16)

]

−
[

−1

3
(8)

3

2 − 1

8
(0)

]

dθ

= 2π

[[

−1

3
(4)

3

2 − 1

8
(16)

]

−
[

−1

3
(8)

3

2 − 1

8
(0)

]]



9. Parts (a) and (b) are independent.

(a) Let Σ be the portion of the cylinder x2 + y2 = 9 between z = 1 and z = 8. If the mass [12 pts]
density at (x, y, z) is given by f(x, y, z) = x2z write down an iterated double integral for
the mass of Σ.
Do not evaluate the integral!

Solution:

We parametrize the cylinder by:

r(θ, z) = 3 cos θ i+ 3 sin θ j+ z k with 0 ≤ θ ≤ 2π and 1 ≤ z ≤ 8 (this is R)

Therefore we have

rθ = −3 sin θ i+ 3 cos θ j+ 0 k

rz = 0 i+ 0 j+ 1 k

rθ × rz = 3 cos θ i+ 3 sin θ j+ 0 k

||rθ × rz|| = 3

And so:

Mass =

∫∫

Σ

x2z dS

=

∫∫

R

(3 cos θ)2(z)(3) dA

=

∫

2π

0

∫

8

1

27z cos2 θ dz dθ

(b) Let C be the triangle with vertices (0, 4), (2, 0) and (2, 4) with clockwise orientation. Use [8 pts]
Green’s Theorem to evaluate

∫

C

4y dx+ 9x dy

Solution:

We have:
∫

C

4y dx+ 9x dy =

∫∫

R

9− 4 dA = 5

∫∫

R

1 dA = 5(Area of R) = 5

(

1

2
(2)(4)

)



10. Let Σ be the portion of the plane x+2y+z = 10 in the first octant. Let C be the boundary of [20 pts]
Σ with counterclockwise orientation when viewed from above. Use Stokes’ Theorem to rewrite
the integral

∫

C
3xy dx+ z2 dy+ xy dz as a surface integral and then proceed until you have an

iterated double integral. Do not evaluate the integral!

Solution:

Stokes’ Theorem tells us that
∫

C

3xy dx+ z2 dy + xy dz =

∫∫

Σ

[(x− 2z) i− (y − 0) j+ (0− 3x) k] · n dS

where Σ is the part of the plane in the first octant oriented upwards. We parametrize Σ as:

r(x, y) = x i+ y j+ (10− x− 2y) k with 0 ≤ x ≤ 10 and 0 ≤ y ≤ 5− 1

2
x (this is R)

Then

rx = 1 i+ 0 j− 1 k

ry = 0 i+ 1 j− 2 k

rx × ry = 1 i+ 2 j+ 1 k

Since this matches Σ’s orientation the integral becomes

∫∫

Σ

[(x− 2z) i− (y − 0) j+ (0− 3x) k] · n dS

= +

∫∫

R

[(x− 2(10− x− 2y)) i− y j− 3x k] · [1 i+ 2 j+ 1 k] dA

=

∫

10

0

∫

5− 1

2
x

0

x− 2(10− x− 2y)− 2y − 3x dy dx


