
Math 403 Chapter 10: Homomorphisms

1. Introduction: If quotient groups are useful then any way of obtaining or understanding them
is also useful. We will see that mappings which are similar to, but weaker than, isomorphisms,
correspond to quotient groups.

2. Homomorphisms:

(a) Definition: A homomorphism φ from a group G to a group H is a mapping φ : G→ H
which satisfies φ(ab) = φ(a)φ(b) for all a, b ∈ G.

In other words it’s as if we take an isomorphism and remove the 1-1 and onto requirements.

It turns out that as with an isomorphism we must have φ(e) = e (as we’ll see) but because
we’ve eliminated the 1-1 requirement we may have other things mapping to e, too. From
this arises the following essential definition:

(b) Definition: The kernel of a homomorphism φ : G→ H is the set:

Kerφ = {g ∈ G |φ(g) = e}

Example: The mapping φ : GL2R → R∗ given by φ(M) = det(M) is a homomorphism
with Kerφ = SL2R.

Example: The mapping φ : Z→ Zn given by φ(x) = x mod n is a homomorphism with
Kerφ = 〈n〉.
Example: The mapping φ : R∗ → R∗ given by φ(x) = x2 is a homomorphism with
Kerφ = {−1, 1}.

3. Definition of the Inverse: Due to the lack of surjectivity and injectivity the inverse of a
homomorphism is usually not a mapping. However we can still define, for h ∈ H and H ′ ≤ H:

φ−1(h) = {g ∈ G |φ(g) = h}
φ−1(H) = {g ∈ G |φ(g) ∈ H}



4. Theorem (Properties of Homorphisms): Let φ : G → H be a homomorphism and let
g ∈ G and G′ ≤ G. Then we have:

(a) φ(e) = e.

(b) φ(gn) = φ(g)n.

(c) If |g| is finite then |φ(g)| divides |g|.
(d) Kerφ ≤ G.

(e) φ(a) = φ(b) iff aKerφ = bKerφ.

(f) If φ(g) = h then φ−1(h) = gKerφ.

(g) φ(G′) ≤ H.

(h) If G′ is cyclic then φ(G′) is cyclic.

(i) If G′ is Abelian then φ(G′) is Abelian.

(j) If G′ / G then φ(G′) / φ(G).

(k) If |Kerφ| = n then φ is an n-1 mapping from G onto φ(G).

(l) If G′ is finite then |φ(G′)| divides |G′|.
(m) If H ′ ≤ H then φ−1(H ′) ≤ G.

(n) If H ′ / H then φ−1(H ′) / G.

(o) If φ is onto and Kerφ = {e} then φ is an isomorphism.

Proof: Many of the proofs are similar to those for an isomorphism or are straightforward and
so we’ll omit those and focus on the ones which are not.

(c) If |g| = n then we have φ(g)n = φ(gn) = φ(e) = e and so |φ(g)| divides n.

(d) If a, b ∈ Kerφ then φ(ab−1) = φ(a)φ(b)−1 = e so the kernel is a subgroup by the one-step
subgroup test.

(e) We have φ(a) = φ(b) iff φ(ab−1) = φ(a)φ(b)−1 = e iff ab−1 ∈ Kerφ iff aKerφ = bKerφ by
an earlier theorem.

(f) Assume φ(g) = h. We show the double inclusion:
φ−1(h) ⊆ gKerφ: If x ∈ φ−1(h) then φ(x) = h and so φ(x) = h = φ(g) and then by (e)
we have xKerφ = gKerφ and since x ∈ xKerφ we have x ∈ gKerφ.
gKerφ ⊆ φ−1(h): If gk ∈ gKerφ then φ(kg) = φ(k)φ(g) = eh = h and so gk ∈ φ−1(h).

(j) Let φ(g′) ∈ φ(G′) and let φ(g) ∈ φ(G). Then φ(g)φ(g′)φ(g)−1 = φ(gg′g−1) ∈ φ(G′) since
G′ / G and so φ(G′) / φ(G) by the normal subgroup test.

(k) Follows from (f) and the fact that all cosets have the same size.

(l) Consider that φG′ : G′ → phi(G′) is a surjective homomorphism. By (k) we know that
this φG′ is a |KerφG′ |-1 mapping and so |G′| = |KerφG′ | · |φ(G′)| so that |φ(G′)| divides
|G′| and since |G′| divides |G| we have our result.

(o) We only need to show that φ is 1-1. In light of that suppose φ(g1) = φ(g2), then
φ(g1g

−1
2 ) = φ(g1)φ(g2)−1 = e so that g1g

−1
2 ∈ Kerφ = {e} and so g1 = g2.



Intuition: The intuition here is that structures are preserved but orders are not, and orders
generally shrink to a divisor of the original order. This can be seen in (c), (k), (l). In addition
the kernel gives us a wealth of information about the homomorphism - it tells us the “shrink
factor” and (d),(e) give us information about what happens to things not in the kernel.

This can be thought of as follows: If we divide G into cosets of Kerφ then each coset is mapped
to a single element in H.

To see this note that the coset eKerφ is mapped to e ∈ H. For another coset, say g0Kerφ, note
that if g ∈ g0Kerφ then g = g0k for some k ∈ Kerφ in which case φ(g) = φ(g0k) = φ(g0)φ(k) =
φ(g0)e = φ(g0) so the entire of g0Kerφ goes to the element that g0 goes to. Moreover if
φ(g) = φ(g0) then φ(gg−10 ) = e and so gg−10 ∈ Kerφ and so gg−10 = k for some k ∈ Kerφ and
so g = g0k and so g ∈ g0Kerφ so that g0Kerφ is all that is mapped to φ(g0).

What is happening can be illustrated by this picture:
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On the left all of G has been subdivided to cosets of Kerφ. Each coset consists of |Kerφ|
elements (since they are all the same size) and each coset (all elements in it) is matched to a
single to an element in H. Some elements in H are possibly missed since φ is not necessily
onto and so really the mapping is to φ(G) ≤ H.



5. Connection to Isomorphisms:

(a) Theorem: If φ : G→ H is a homomorphism then Kerφ / G.
Proof: The fact that it’s a subgroup is (d) above. The fact that it’s normal follows from
(n) above since Kerφ = φ−1(e). QED
The only reason we list this separately is that it is so important.

(b) Theorem (First Isomorphism Theorem): Suppose φ : G→ H is a homomorphism.
Then the mapping:

G/Kerφ→ φ(G)

given by:
gKerφ 7→ φ(g)

is an isomorphism. That is, G/Kerφ ≈ φ(G).
Proof: Define ψ : G/Kerφ → φ(G) by ψ(gKerφ) = φ(g). Part (e) of the theorem above
shows this is well-defined, meaning independent of the coset representative, and also that
it is 1-1. It is onto by construction. To show it preserves the operation observe that:

ψ(g1Kerφg2Kerφ) = ψ(g1g2Kerφ) = φ(g1g2) = φ(g1)φ(g2) = ψ(g1Kerφ)ψ(g2Kerφ)

QED
Example: The mapping φ : Z → Z5 given by φ(x) = x mod 5 is a homomorphism and
has Kerφ = 5Z and consequently Z/5Z ≈ Z5.

Intuition: In the picture earlier we can see what is happening. There is a 1-1 correspon-
dance between the group of cosets in G and the image φ(G) and this correspondance is
an isomorphism.

(c) Theorem: Suppose φ : G → H is a homomorphism. Then |φ(G)| divides both |G| and
|H|.
Proof: Since G is a subgroup of itself, part (g) of the theorem above implies that φ(G) ≤
H and so |φ(G)| divides |H| by Lagrange’s Theorem and part (l) of the theorem above
implies that |φ(G)| divides |G|.
Example: If |G| = 20 and |H| = 32 and if φ : G → H is a homomorphism then |φ(G)|
can oly be 1 or 2.

Example: If gcd (|G|, |H|) = 1 then the only homomorphism must take everything to
e ∈ H.

(d) Theorem (Normal Subgroups are Kernels): SupposeN/G. Then there is a mapping
φ from G to another group with N = Kerφ.
Proof: Define φ : G→ G/N by φ(g) = gN . First note that:

φ(xy) = xyN = xNyN = φ(x)φ(y)

Then note that:

g ∈ Kerφ iff φ(g) = eN iff gN = eN iff g ∈ N

QED


