
Math 403 Chapter 14: Ideals and Quotient (Factor) Rings

1. Introduction: In group theory we introduced the concept of a normal subgroup and we
showed that if N / G then we can create the quotient (factor) group G/N . This idea has an
analogy in the theory of rings.

2. Ideals:

(a) Definition: A subring A ≤ R is called an ideal of R if ∀r ∈ R and ∀a ∈ A we have
ar, ra ∈ A.

Definition: A is a proper ideal if it is an ideal which is not the entire ring.

Example: For any ring R both {0} and R are ideals of R.

Example: nZ is an ideal of Z.

Example: The set of polynomials with real coefficients and constant term 0 is an ideal
of R[x].

(b) Theorem (Ideal Test): If A ⊆ R with A 6= ∅ then A is an ideal of F if:

i. ∀a, b ∈ A we have a− b ∈ A. Note that a− b means a + (−b).
ii. ∀a ∈ A and ∀r ∈ R we have ar, ra ∈ A.

Proof: This is a straightforward mash-up of the subring test and the definition of an
ideal. QED

(c) Definition: If R is a commutative ring with unity and a ∈ R then the principal ideal
generated by a is the set:

〈a〉 = {ra | r ∈ R}

Note: The fact that its an ideal follows from the definition.
Warning: We use the notation 〈g〉 in group theory but the definitions are different!

Example: In R[x] the ideal 〈x〉 consists of all polynomials with constant term 0.

Definition: We can expand the above for a1, ..., an ∈ R commutative with unity to have
the ideal generated by all of the ai:

〈a1, ..., an〉 = {r1a1 + ... + rnan | r1, ..., rn ∈ R}

Example: In Z[x] the ideal 〈x, 2〉 consists of all polynomials with even constant term.
This is because an element in this ideal has the form p(x)(x)+q(x)(2) for p(x), q(x) ∈ Z[x].

3. Quotient (Factor) Rings:

(a) Definition: Let R be a ring and A be a subring of A. Then the set of cosets (defined
the same way as for groups with addition):

R/A = {r + A | r ∈ R}

is a ring under the operations (r+A) + (s+A) = (r+ s) +A and (r+A)(s+A) = rs+A
iff A is an ideal of R.

Proof: Suppose A is an ideal of R. Since R is an Abelian group under addition we know
A is a normal subgroup and so the set of cosets forms a group under addition. Next we
need to show that our multiplication is well-defined. Suppose we have s+A = s′ +A and



t+A = t′ +A, then s′ + 0 ∈ s+A so s′ = s+ a and likewise t′ = t+ b for a, b ∈ A. Then
observe that:

s′t′ + A = (s + a)(t + b) + A = st + at + sb + ab + A = st + A

The final equality holds because at, sb ∈ A because A is an ideal and ab ∈ A because A is
a subring of R. Showing that multiplication is associative and distributes over addition
follows immediately.

Note that if A is not an ideal of R then choose a ∈ A and r ∈ R with (WLOG) ar 6∈ A.
Then (a + A)(r + A) = ar + A but (a + A)(r + A) = (0 + A)(r + A) = 0 + A which
contradicts the fact that ar 6∈ A. QED
Example: The quotient ring Z/4Z consists of the elements {0+4Z, 1+4Z, 2+4Z, 3+4Z}
with obvious operations, for example (2 + 4Z) + (3 + 4Z) = 5 + 4Z = 1 + 4Z and
(2 + 4Z)(3 + 4Z) = 6 + 4Z = 2 + 4Z.

Example: Consider the quotient ring Z[x]/
〈
x2 − 2

〉
. What do the distinct cosets look

like? Well we have x2−2+
〈
x2 − 2

〉
= 0+

〈
x2 − 2

〉
so we can think of this as x2+

〈
x2 − 2

〉
=

2 +
〈
x2 − 2

〉
. This allows drastic simplification of the cosets, for example:

7x6 + x5 − 3x2 + 4x− 1 +
〈
x2 − 2

〉
= 7(x2)3 + (x2)2x− 3(x2) + 4x− 1 +

〈
x2 − 2

〉
= 7(2)3 + (2)2x− 3(2) + 4x− 1 +

〈
x2 − 2

〉
= 8x− 49 +

〈
x2 − 2

〉
and similarly every p(x) +

〈
x2 − 2

〉
is equivalent to ax + b +

〈
x2 − 2

〉
with a, b ∈ Z.

Could we reduce further? In other words could two of these be the same? Well suppose
ax+b+

〈
x2 − 2

〉
= cx+d+

〈
x2 − 2

〉
. Then we have (a−c)x+(b−d)+〈x− 2〉 = 0+

〈
x2 − 2

〉
and so (a− c)x + (b− d) ∈

〈
x2 − 2

〉
.

However elements in
〈
x2 − 2

〉
have the form q(x)(x2 − 2) for q(x) ∈ Z[x] and therefore

have degree at least 2 except for the zero polynomial. Since (a− c)x+ (b− d) has degree
at most 1 it must be the zero polynomial and so a = c and b = d. Thus these elements
are all distinct.

How does multiplication work in this ring? In general:(
ax + b +

〈
x2 − 2

〉) (
cx + d +

〈
x2 − 2

〉)
= acx2 + (ad + bc)x + bd +

〈
x2 − 2

〉
= ac(2) + (ad + bc)x + bd +

〈
x2 − 2

〉
= (ad + bc)x + (bd + 2ac) +

〈
x2 − 2

〉
Example: Consider the quotient ring Z[i]/ 〈3 + i〉. What do the distinct cosets look like?
Well we have 3+i+〈3 + i〉 = 0+〈3 + i〉 so we can think of this as i+〈3 + i〉 = −3+〈3 + i〉.
However since i2 = −1 we can square both sides to get −1 + 〈3 + i〉 = 9 + 〈3 + i〉 and so
10 + 〈3 + i〉 = 0 + 〈3 + i〉.
Since every coset has the form a+ bi+ 〈3 + i〉 such a coset can be rewritten by replacing
i with −3 and 10 with 0, therefore every coset has the form c + 〈3 + i〉 for c ∈ Z10.

Could two of these coset be identical? Suppose a + 〈3 + i〉 = b + 〈3 + i〉 so that a − b ∈
〈3 + i〉 and so a − b = (c + di)(3 + i) = (3c − d) + (c + 3d)i for some c, d ∈ Z. But then
3c− d = a− b and c + 3d = 0. Solving these yields a− b = −10d but since a, b ∈ Z10 we
have d = 0 and a = b.

Thus they are unique. In fact this is essentially the ring Z10 written differently.



4. Maximal and Prime Ideals:

(a) Definition: A proper ideal A of a commutative ring R is a maximal ideal of R if whenever
B is another ideal with A ⊆ B ⊆ R then B = A or B = R.

Basically this means that an ideal which is larger must be the entire ring. Typically
proving that an ideal is maximal involves taking another ideal B with A ( B and showing
B = R. Typically to show B = R we show 1 ∈ B because then r = r(1) ∈ B for any
r ∈ R.

Example: The ideal 6Z is not maximal in Z because 6Z ( 2Z ( Z.

Example: The ideal 7Z is maximal in Z. To see this suppose 7Z ( B ⊆ R, then there is
some b ∈ B with b 6∈ 7Z and so gcd (7, b) = 1 and so there exist x, y ∈ Z with 7x+ by = 1.
Then since b ∈ B and 7 ∈ 7Z ( B we have 1 ∈ B and then r = r(1) ∈ B for all r and so
R = B.

Example: The ideal 〈x〉 is not maximal in Z[x] since 〈x〉 ( 〈x, 2〉 ( Z[x].

(b) Definition: A proper ideal A of a commutative ring R is a prime ideal of R if for all
a, b ∈ R if ab ∈ A then a ∈ A or b ∈ A.

Example: The ideal 6Z is not prime in Z because (2)(3) ∈ 6Z but 2 6∈ 6Z and 3 6∈ 6Z.

Example: The ideal 7Z is prime in Z. To see this suppose ab ∈ 7Z. Then 7 | ab and so
7 | a or 7 | b and so a ∈ 7Z or b ∈ 7Z.

Example: The ideal 〈x〉 is prime in Z[x]. To see this suppose p(x)q(x) ∈ 〈x〉. The ideal
〈x〉 consists of all polynomials with constant term zero and hence one of p(x) or q(x) must
have constant term 0 since the constant term of p(x)q(x) is the product of the constant
terms of p(x) and of q(x). Thus either p(x) or q(x) is in 〈x〉.

(c) Theorem: Let R be a commutative ring with unity and let A be an ideal. Then R/A is
an integral domain iff A is a prime ideal.
Proof:
=⇒: Suppose R/A is an integral domain and suppose ab ∈ A. Then (a + A)(b + A) =
ab + A = 0 + A so either a + A = 0 + A or b + A = 0 + A and so either a ∈ A or b ∈ A.
⇐=: Suppose A is a prime ideal and suppose (a+A)(b+A) = 0+A. Then ab+A = 0+A
and so ab ∈ A and so either a ∈ A or b ∈ A and so either a+A = 0 +A or b+A = 0 +A.
QED

(d) Theorem: Let R be a commutative ring with unity and let A be an ideal. Then R/A is
a field iff A is maximal.
Proof:
=⇒: Suppose R/A is a field and A ( B ⊆ R. Let b ∈ B with b 6∈ A. Then b+A 6= 0 +A
and so b + A is a unit in R/A and so there is some c + A with (b + A)(c + A) = 1 + A.
Thus bc + A = 1 + A and so 1− bc ∈ A ⊆ B. Since b ∈ B we then have bc ∈ B (because
B is an ideal) and hence 1 ∈ B and so B = R.
⇐=: Suppose A is maximal and let x + A 6= 0 + A. Consider the set B = {rx + a | r ∈
R, a ∈ A}. A short proof (omitted) shows that B is an ideal of R which contains but
is larger than A. Thus B = R and so 1 = r′x + a′ for some r′ ∈ R and a′ ∈ A and so
(r′ + A)(x + A) = r′x + A = 1− a′ + A = 1 + A. QED
Corollary: If R is commutative then if an ideal A is maximal then it is prime.
Proof: If A is maximal then R/A is a field and hence R/A is an integral domain and
hence A is prime. QED
The reverse is of course not true as we have seen: The ideal 〈x〉 is prime but not maximal
in Z[x].


