Math 403 Chapter 14: Ideals and Quotient (Factor) Rings

1. Introduction: In group theory we introduced the concept of a normal subgroup and we
showed that if N <G then we can create the quotient (factor) group G/N. This idea has an
analogy in the theory of rings.

2. Ideals:

(a)

Definition: A subring A < R is called an ideal of R if Vr € R and Ya € A we have
ar,ra € A.

Definition: A is a proper ideal if it is an ideal which is not the entire ring.
Example: For any ring R both {0} and R are ideals of R.
Example: nZ is an ideal of Z.
Example: The set of polynomials with real coefficients and constant term 0 is an ideal
of R[z].
Theorem (Ideal Test): If A C R with A # () then A is an ideal of F if:
i. Ya,b € A we have a — b € A. Note that a — b means a + (—b).
ii. Va € A and Vr € R we have ar,ra € A.

Proof: This is a straightforward mash-up of the subring test and the definition of an
ideal. QED

Definition: If R is a commutative ring with unity and a € R then the principal ideal
generated by a is the set:

(a) ={ra|r € R}
Note: The fact that its an ideal follows from the definition.
Warning: We use the notation (g) in group theory but the definitions are different!
Example: In R[z] the ideal () consists of all polynomials with constant term 0.

Definition: We can expand the above for aq, ..., a, € R commutative with unity to have
the ideal generated by all of the a;:

(a1, .coyan) ={ria1 + ... + rpan |11, ..., € R}

Example: In Z[z] the ideal (z,2) consists of all polynomials with even constant term.
This is because an element in this ideal has the form p(z)(z)+¢(z)(2) for p(z), ¢(z) € Z[z].

3. Quotient (Factor) Rings:

(a)

Definition: Let R be a ring and A be a subring of A. Then the set of cosets (defined
the same way as for groups with addition):

R/A={r+ A|r e R}

is a ring under the operations (r+A)+(s+A) = (r+s)+Aand (r+A)(s+A)=rs+ A
iff A is an ideal of R.

Proof: Suppose A is an ideal of R. Since R is an Abelian group under addition we know
A is a normal subgroup and so the set of cosets forms a group under addition. Next we
need to show that our multiplication is well-defined. Suppose we have s+ A = s’ + A and



t+A=t+A, then s +0€ s+ Asos =s+aand likewise t' =t+b for a,b € A. Then
observe that:

St+A=(s+a)t+b)+A=st+at+sb+ab+ A=st+ A

The final equality holds because at, sb € A because A is an ideal and ab € A because A is
a subring of R. Showing that multiplication is associative and distributes over addition
follows immediately.

Note that if A is not an ideal of R then choose a € A and r € R with (WLOG) ar ¢ A.
Then (a + A)(r + A) = ar + A but (a + A)(r+ A) = (0+ A)(r + A) = 0+ A which
contradicts the fact that ar & A. QED
Example: The quotient ring Z /47 consists of the elements {0+47,14+47Z,2+47,3+47Z}
with obvious operations, for example (2 + 4Z) + (3 + 4Z) = 5+ 4Z = 1 + 4Z and
(24 4Z)(3 + AZ) = 6 + AZ = 2 + 4Z.

Example: Consider the quotient ring Z[z]/ (2 — 2). What do the distinct cosets look
like? Well we have 22—2+(x? — 2) = 0+(x? — 2) so we can think of this as z?+(z? — 2) =
2+ (2% — 2). This allows drastic simplification of the cosets, for example:

720 + 2% = 32% + 4z — 1+ (2° — 2) = 7(2)® + (2°)%2 — 3(2?) + 4z — 1 + (2 — 2)
=7(2)° + (2)°z —3(2) + 4z — 1 + (2* — 2)
=8z — 49 + (2° — 2)

and similarly every p(x) + <x2 — 2> is equivalent to ax + b+ <x2 — 2> with a,b € Z.
Could we reduce further? In other words could two of these be the same? Well suppose
az+b+(z? — 2) = co+d+(z? — 2). Then we have (a—c)z+(b—d)+(z — 2) = 0+(z? — 2)
and so (a — c)z + (b—d) € (2? — 2).

However elements in (2% — 2) have the form g(z)(z* — 2) for q(z) € Z[z] and therefore
have degree at least 2 except for the zero polynomial. Since (a — ¢)x + (b — d) has degree
at most 1 it must be the zero polynomial and so @ = ¢ and b = d. Thus these elements
are all distinct.

How does multiplication work in this ring? In general:

(az+ b+ (2> —2)) (cz + d+ (2* — 2)) = acz® + (ad + be)x + bd + (2° — 2)
= ac(2) + (ad + be)z + bd + (z* — 2)
= (ad + bc)z + (bd + 2ac) + (z* — 2)

Example: Consider the quotient ring Z[i]/ (3 + ¢). What do the distinct cosets look like?
Well we have 3+i+(3 + i) = 04+ (3 + 7) so we can think of this as i+ (3 + i) = —3+(3 + ).
However since i = —1 we can square both sides to get —1 + (3 +i) = 9+ (3 +4) and so
104+ (3 +14) =0+ (3 +1).

Since every coset has the form a + bi + (3 + @) such a coset can be rewritten by replacing
¢ with —3 and 10 with 0, therefore every coset has the form ¢+ (3 4 i) for ¢ € Z.
Could two of these coset be identical? Suppose a + (3+i) =b+ (3+ i) sothat a —b €
(3+1i)yand so a—b = (c+di)(3+ 1) = (3¢ — d) + (¢ + 3d)i for some ¢,d € Z. But then
3c—d=a—"band c+ 3d = 0. Solving these yields a — b = —10d but since a,b € Z1g we
have d =0 and a = b.

Thus they are unique. In fact this is essentially the ring Z,¢ written differently.



4. Maximal and Prime Ideals:

(a)

Definition: A proper ideal A of a commutative ring R is a maximal ideal of R if whenever
B is another ideal with A C B C R then B= A or B = R.

Basically this means that an ideal which is larger must be the entire ring. Typically
proving that an ideal is maximal involves taking another ideal B with A C B and showing
B = R. Typically to show B = R we show 1 € B because then r = (1) € B for any
r € R.

Example: The ideal 6Z is not maximal in Z because 6Z C 2Z C Z.

Example: The ideal 77Z is maximal in Z. To see this suppose 7Z C B C R, then there is
some b € B with b ¢ 7Z and so ged (7,b) = 1 and so there exist x,y € Z with 7z +by = 1.
Then since b € B and 7 € 7Z C B we have 1 € B and then r = r(1) € B for all r and so
R=B.

Example: The ideal (x) is not maximal in Z[z] since (z) C (x,2) C Zlx].

Definition: A proper ideal A of a commutative ring R is a prime ideal of R if for all
a,be Rifabe Athena € Aorbe A.

Example: The ideal 6Z is not prime in Z because (2)(3) € 6Z but 2 ¢ 6Z and 3 ¢ 6Z.
Example: The ideal 7Z is prime in Z. To see this suppose ab € 7Z. Then 7 | ab and so
Tlaor7|bandsoac TZorbeTZ.

Example: The ideal (x) is prime in Z[z]. To see this suppose p(z)q(z) € (x). The ideal
(x) consists of all polynomials with constant term zero and hence one of p(z) or g(x) must
have constant term 0 since the constant term of p(x)q(x) is the product of the constant
terms of p(x) and of ¢(z). Thus either p(x) or ¢(z) is in (z).

Theorem: Let R be a commutative ring with unity and let A be an ideal. Then R/A is
an integral domain iff A is a prime ideal.

Proof:

=: Suppose R/A is an integral domain and suppose ab € A. Then (a + A)(b+ A) =
ab+A=0+ Asoeithera+A=0+Aorb+A=0+ A and so either a € Aor b € A.
<=: Suppose A is a prime ideal and suppose (a+ A)(b+ A) =0+ A. Then ab+ A =0+ A
and so ab € A and so either a € Aor b € A and so eithera+A=0+Aor b+ A =0+ A.
QED

Theorem: Let R be a commutative ring with unity and let A be an ideal. Then R/A is
a field iff A is maximal.

Proof:

=—>: Suppose R/Aisafieldand AC BC R. Letbe Bwithb¢Z A. Thenb+A#0+ A
and so b+ A is a unit in R/A and so there is some ¢ + A with (b+ A)(c+ A) =1+ A.
Thus bc+ A=1+ A andso 1l —bc € AC B. Since b € B we then have bc € B (because
B is an ideal) and hence 1 € B and so B = R.

<=: Suppose A is maximal and let z + A # 0+ A. Consider the set B = {rz +a|r €
R,a € A}. A short proof (omitted) shows that B is an ideal of R which contains but
is larger than A. Thus B = R and so 1 = 7’z + o’ for some ' € R and ¢’ € A and so
r+A@x+A)=r'z+A=1-d+A=1+A. QED
Corollary: If R is commutative then if an ideal A is maximal then it is prime.

Proof: If A is maximal then R/A is a field and hence R/A is an integral domain and
hence A is prime. QED
The reverse is of course not true as we have seen: The ideal (x) is prime but not maximal
in Z[x].



