Math 403 Chapter 15: Ring Homomorphisms

1. Introduction: As with groups, among other things, ring homomorphism are a way of creating
ideals. In reality we’ll use them less than we did with groups.

2. Homomorphisms - Basics:

(a)

Definition: A ring homomorphism from a ring R; to a ring R is a mapping ¢ : R — Rs
such that for all a,b € Ry we have:

* ¢la+b)=¢(a) + ¢(b)
e ¢(ab) = ¢(a)o(b)
Note that the operations may in theory differ, the left being in R and the right in S.

Also note that a ring homomorphism is in fact a group homomorphism with the group
operation being the + inside the ring.

Definition: A ring homomorphism is a ring isomorphism if it is 1-1 and onto.

Definition: The kernel of a ring homomorphism ¢ : Ry — R» is the set:
Ker(b = {a ERy ‘(]5(&) =0¢€ Rg}

Examples:

Example: The mapping ¢ : Z — Z,, given by ¢(x) = 2 mod n is a ring homomorphism.
The kernel is nZ.

Example: The mapping ¢ : C — C given by ¢(a + bi) = a — bi is a ring homomorphism.
The kernel is 0.

Example: The mapping ¢ : Rlz] — R given by ¢(p(z)) = p(2) is a ring homomorphism.
The kernel is all the polynomials with xz-intercept at x = 2.

Example: The mapping ¢ : Z12 — Zsp given by ¢(x) = 10z mod 30 is a ring homomor-
phism. This is not obvious because of the modulus change. To clarify the problem, when
we write ¢(x) = 10z mod 30 we assume x € {0,1,...,11}. However when we do ¢(x + y)
we have z,y € {0,1,...,11} but z + y is not necessarily so, rather it is reduced mod 12
and then ¢ is applied. Thus what we are really trying to show is that:

é((x + y) mod 12) = (¢(x) mod 30) + (¢(y) mod 30)
To show this note that if we write  +y = 12¢ + r with 0 < r < 12 then:

#((x +y) mod 12) = ¢((12¢ + r) mod 12) mod 30
= ¢(r) mod 30
= 107 mod 30
= 10(z + y — 12¢) mod 30
= 10z + 10y — 120¢ mod 30
= 10z + 10y mod 30
= (¢(z) + ¢(y)) mod 30
= (¢(z) mod 30) + (¢(y) mod 30)



And similarly if we write xy = 12¢ 4+ r with 0 <7 < 12 then:

¢((zy) mod 12) = ¢((12¢ + ) mod 12) mod 30
= ¢(r) mod 30
= 10r mod 30
= 10(zy — 12¢) mod 30
= 102y — 120g mod 30
= 102y mod 30
= 10zy + 90zxy mod 30
= (10z)(10y) mod 30
— (6(2)(y)) mod 30
— (6(x) mod 30)(6(y) mod 30)

3. Theorem (Properties): Let ¢ : R — S be a ring homomorphism. Let A be a subring of R
and let B be an ideal of S.

(a)
(b)

(c) &
(d)
()
(f) ¢

)

¢(A) is a subring of S.

If A is an ideal of R then ¢(A) is an ideal of ¢(R). Thus if ¢ is onto then ¢(A) is an ideal
of S.

~1(B) is an ideal of R.
If R is commutative then so is ¢(R).
If R has unity 1, if S # {0} and if ¢ is onto, then ¢(1) is the unity for S.

f) ¢ is an isomorphism iff ¢ is onto and Ker¢ = {0}.
(g) If ¢ is an isomorphism then ¢! : S — R is also an isomorphism.
Proof: All are straightforward. QED

4. Connection to Quotient Rings

(a)

(b)

Theorem (Kernels are Ideals): Let ¢ : R — S be a ring homomorphism. Then Ker¢
is an ideal of R.
Proof: Straightfoward. QED

Theorem (First Isomorphism Theorem for Rings): Let ¢ : R — S be a ring
homomorphism. Then the mapping ¢ : R/Ker¢ — ¢(R) given by ¥ (r 4+ Kerg) = ¢(r) is
a ring isomorphism.

Proof: Straightforward. QED

Theorem (Ideals are Kernels): Every ideal A of a ring R is the kernel of the ring
homomorphism from R to R/A taking r — r + A.
Proof: Straightforward. QED



