
Math 403 Chapter 17: Factorization of Polynomials

1. Introduction: The notion of factorization of polynomials depends heavily on the ring in
question. For example consider p(x) = 2x + 2. In Z[x] we can factor this as 2x + 2 = 2(x + 1)
but in 2Z[x] we cannot factor it. What we do in this section is work out some specifics.

2. Reducibility

(a) Definition: Let D be an integral domain and let f(x) be a non-zero non-unit in D[x],
we say that f(x) is reducible over D if we can factor f(x) = g(x)h(x) where both g(x)
and h(x) are non-units. Otherwise we say that f(x) is irreducible over D.

Note: The phrase ”reducible/irreducible over D” can be best interpreted as ”factorable/
nonfactorable into non-units in D[x]”.

Note: This is basically an generalization of the notion of primality. For example in Z we
say that 6 is composite (think reducible) because we may write 6 = (2)(3) and neither is
a unit (the units are ±1). On the other hand we cannot do this with 5, which is prime
(think irreducible). The integers 0,−1, 1 are considered neither.

Example: The polynomial 2x+2 is reducible over Z since we can write 2x+2 = 2(x+1)
and neither 2 nor x + 1 is a unit in Z[x].

Example: The polynomial 2x + 2 is irreducible over R since any factorization results in
at least one unit, for example 2x + 2 = 2(x + 1) doesn’t count since 2 is a unit.

Example: The polynomial x2 − 5 is reducible over R since we can write x2 − 5 =
(x−

√
5)(x +

√
5) and neither is a unit in R[x].

Example: The polynomial x2 − 5 is irreducible over Q since we cannot factor it into
non-units in Q[x].

(b) Theorem (Reducibility for Degrees 2 and 3): Let F be a field. If f(x) ∈ F [x] has
degree 2 or 3 then f(x) is reducible over F iff f(x) has a zero/root in F .

Note: This is a generalization of a well-known fact in R[x]. For example if f(x) =
x3 + x2 − x − 10 then knowing that f(2) = 0 is equivalent to knowing that x − 2 is a
factor and in fact x3 + x2 − x− 10 = (x− 2)(x2 + 3x+ 5). This doesn’t work in degree 4
or higher, for example x4 + 2x2 + 1 factors as (x2 + 1)(x2 + 1) but has no zeros/roots in
R.

Note: Since Zp (with p a prime) is a field, in Zp[x] we can check for reducibility in
the degree 2/3 case by simply checking all roots. For example consider f(x) = x4 +
2x2 + x + 1 ∈ Z3[x]. We check f(0) = 1, f(1) = 2, and f(2) = 0. Since f(2) = 0 we
know that (x− 2) is a factor and f(x) is reducible over Z3. On the other hand consider
f(x) = x3 + x2 + x + 2 ∈ Z3[x]. We check f(0) = 2, f(1) = 2 and f(2) = 1. Since there
are no zeros/roots we know f(x) is irreducible over Z3.

Proof:
=⇒: Suppose f(x) is reducible, then f(x) = g(x)h(x) and since neither is a unit, both
have positive degree, and then since the degrees add to 3, one of them must have degree
1 and the other degree 2. The one degree 1 factor yields a zero/root.
⇐=: Suppose f(x) has a zero/root. Then by the Factor Theorem f(x) = (x−a)g(x) and
so f(x) is reducible. QED

(c) Theorem (Reducibility over Q implies over Z): If f(x) ∈ Z[x] is reducible over Q
then it is reducible over Z.
Proof: Omit. QED
Note: Essentially this states that if we have a polynomial with coefficients in Z that if
we can factor it into non-units in Q[x] then we can factor it into non-units in Z[x].

Example: As an example consider f(x) = 10x2 − 11x − 35. Observe that f(x) =(
5x− 25

2

) (
2x + 14

5

)
so we can factor it in Q[x]. But in fact f(x) = (2x − 5)(5x + 7) as

well, so we can factor it in Z[x]. The theorem states that this can always be done.



(d) Theorem (Mod p Irreducibility Test): Let p be a prime and let f(x) ∈ Z[x] with
degree 1 or greater. Let f̄(x) be the polynomial in Zp[x] obtained by reducing all of f(x)’s
coefficients mod p. Then if deg(f̄(x)) = deg(f(x)) and if f̄(x) is irreducible over Zp then
f(x) is irreducible over Q.

Note: Be careful of how this is used. Basically we can pick a prime p and if the degree
of f̄(x) is unchanged and if f̄(x) is irreducible over Zp (which can be easily tested in the
cases of degrees 2 and 3) then we gain irreducibility over Z. However if the degree drops
then nothing can be concluded and if f̄(x) is reducible over Zp then nothing is concluded.
When nothing is concluded we can of course try other p but we could continue to gain
no new knowledge each time.

Example: Consider f(x) = x3 + 7x2 + 13x− 4. Using p = 2 we have f̄(x) = x3 +x2 +x.
This is reducible over Zp and nothing is gained.

Using p = 3 we have f̄(x) = x3 + x2 + x + 2. Using the deg2/3 test we check: f̄(0) = 2,
f̄(1) = 5 = 2 and f̄(2) = 16 = 1. Since there are no zeros/roots we know that f̄(x) is
irreducible over Z3 and then by the mod p test f(x) is irreducible over Z.

Proof: Suppose f(x) is reducible over Q, then it is reducible over Z and so f(x) =
g(x)h(x) with g(x), h(x) ∈ Z[x] both having degree less than deg(f(x)). If we reduce
the coefficents of all three mod p to get f̄ , ḡ and h̄ then we have f̄(x) = ḡ(x)h̄(x) and
deg(ḡ(x)) ≤ deg(g(x)) < deg(f(x)) = deg(f̄(x)) and similarly for h(x). Of course since
which contradicts the fact that f̄(x) is irreducible over Zp. QED

(e) Theorem (Eisenstein’s Criterion): Suppose we have:

f(x) = anx
n + ... + a1x + a0 ∈ Z[x]

If we can find a prime p such that p - an, p | an−1, ...,p | a0, p2 - a0 then f(x) is irreducible
over Q.

Example: The polyomial 6x5 + 5x4 − 25x3 + 15x + 10 is irreducible over Q using the
prime p = 5.

Proof: Suppose such a p exists but f(x) is reducible over Q. We know then that it is
reducible over Z and so f(x) = g(x)h(x) with g(x) = bix

i + ... + b1x + b0 and g(x) =
cjx

j + ... + c1x + c0 with 1 ≤ i < n and 1 ≤ j < n. Since a0 = b0c0 and since p | a0 but
p20 - a0 we have either p | b0 or p | c0 but not both. Without loss of generality assume
p | b0 and p - c0. Since an = bicj and since p - an we know p - bi and so there is a smallest
index m ≤ i < n with p - bm. Consider that:

am = b0cm + b1cm−1 + ... + bm−1c1 + bmc0

Since p | am and p | b0, ... p | bm−1 we must have p | bmc0 which contradicts the fact that
p - bm and p - c0. QED



3. Connection to Quotient Rings

(a) Theorem: Let F be a field and let p(x) ∈ F [x]. Then 〈p(x)〉 is a maximal ideal in F [x]
iff p(x) is irreducible over F .

Proof:
=⇒: Suppose 〈p(x)〉 is a maximal ideal in F [x]. We know that p(x) 6= 0 and p(x) is not a
unit since neither {0} nor 〈unit〉 = F [x] is a maximal ideal in F [x]. Let p(x) = g(x)h(x)
be a factorization. Then 〈p(x)〉 ⊆ 〈g(x)〉 ⊆ F [x] and since 〈p(x)〉 is maximal we either
have 〈g(x)〉 = 〈p(x)〉 or 〈g(x)〉 = F [x]. In the first case we get deg(g(x)) = deg(p(x)) by a
previous theorem (they both have minimal and therefore equal degree) and in the second
case we get deg(g(x)) = 0 and so deg(h(x)) = deg(p(x)). Thus p(x) is irreducible.
⇐=: Suppose that p(x) is irreducible over F . Let I be an ideal with 〈p(x)〉 ⊆ I ⊆ F [x].
Because F [x] is a PID we know that I = 〈g(x)〉 for some g(x) ∈ F [x] and so p(x) ∈ 〈g(x)〉
and hence p(x) = g(x)h(x) for some h(x) ∈ F [x]. Since p(x) is irreducible either g(x) or
h(x) is a constant. In the first case I = F [x] and in the second case I = 〈p(x)〉. QED
Note: This can be used to construct desired fields. If we want a field with 7 elements we
can use Z7 but if we want a field with 27 elements we cannot use Z27 because it is not a
field (why not?)

But we can construct one when this new theorem is coupled with a theorem from earlier
in the class which stated:

An ideal I of a ring R is maximal ⇔ R/I is a field.

It follows that we can say that given a field F :

p(x) ∈ F [x] is irreducible over F ⇔ 〈p(x)〉 is maximal ⇔ F [x]/ 〈p(x)〉 is a field.

Consider that we showed that p(x) = x3 + x2 + x + 2 is irreducible over Z3 and hence
Z3[x]/

〈
x3 + x2 + x + 2

〉
is a field. Elements in this field have the form ax2 + bx + c +〈

x3 + x2 + x + 2
〉

with a, b, c ∈ Z3 (why?) and there are 27 such elements.

(b) Corollary: Let F be a field and let p(x), a(x), b(x) ∈ F [x]. If p(x) is irreducible over F
and if p(x) | a(x)b(x) then p(x) | a(x) or p(x) | b(x).

Note: This is a generalization of the notion from number theory (that we’ve used) that
if a prime p | ab then p | a or p | b.
Proof: Since p(x) is irreducible F [x]/ 〈p(x)〉 is a field and hence an integral domain.
Then 〈p(x)〉 is a prime ideal and since p(x) | a(x)b(x) we have a(x)b(x) ∈ 〈p(x)〉 and so
one of them is in 〈p(x)〉. The result follows. QED


