Math 403 Chapter 21: Algebraic Extensions

1. Introduction: Extension fields may be categorized several different ways. In this chapter we
will look at some of these divisions.

2. Algebraic v Transcendental

(a)

(b)
()

Definition: Given an extension field F of F' and an element a € F, we say that a is
algebraic over F if a is the root of a polynomial in F'. Otherwise we say it is transcendental
over F'.

Note: The base field F' is important here. Often when people just say “transcendental”
they mean over Q but that isn’t the only possibility.

Example: v/2 € R D Z is algebraic over Z because it is a root of the polynomial 22 — 2 €
Z[z].

Example: /2 + /3 € R D Z is algebraic over Z because it is a root of the polynomial
zt — 42?4+ 1 € Z[z].

Example: 7 € R D Z is transcendental over Z because there is no polynomial in Z[z] for
which 7 is a root. This is hard to prove.

Example: m € C D R is algebraic over R because it is a root of the polynomial z—7 € R|x].

Definition: An extension field E of F' is called an algebraic extension of F' if every element
of F is algebraic over F. Otherwise we say it is a transcendental extension of F.

Definition: An extension field of the form F(a) is a simple extension of F'.

3. Algebraic Extensions

(a)
(b)

Introduction: Here we will focus specifically on a theorem related to algebraic extensions.
It basically revisits something we know but from an opposite direction.

Theorem: Let E be an extension field of F' and let a € E. If a is algebraic over F
then F(a) = F[z]/ (p(x)) where p(z) is a polynomial in F[z] of minimal degree for which
p(a) = 0. In addition such a p(z) will be irreducible over F.

Note: This isomorphism arose earlier in the FTOFT but in that case we started with an
irreducible polynomial and constructed an extension field in which a root existed whereas
in this case we starting with an extension field that we know about and a root in that
extension field and an irreducible polynomial emerges.

Proof: If a is algebraic over F then define ¢ : F[z] — F(a) by ¢(f(x)) = f(a). By the
First Isomorphism Theorem we know that

Flz]/Ker ¢ = ¢(F[z]) € F(a)

Since a is algebraic over F there are f(z) € Flx] with f(a) = 0 and so Ker ¢ # 0. Thus
we know that Ker¢ is a nonzero ideal of F[z] which can be written in the form (p(x))
(since F[z] is a PID) where p(z) is a polynomial of minimal degree in the ideal (previous
theorem). Since p(x) has minimal degree it must be irreducible since if we could reduce
p(z) = f(z)g(x) then 0 = p(a) = f(a)g(a) would imply a polynomial of lower degree for
which a were a root.

Now then since p(z) is irreducible we know that (p(z)) is maximal (previous theorem) and
hence F[z]/ (p(z)) is a field (prevous theorem) and since F|x]/ (p(x)) ~ ¢(F|[x]) we know
that ¢(F[z]) is a subfield of F(a) containing both F' (since ¢(c) = ¢ for ¢ € F') and a (since
¢(z) = a). But F(a) is the smallest such subfield and so ¢(F[z]) = F(a) and the result
follows. QED



Example: Consider v2 € R D Q is algebraic over rationals, since it’s a root of, among
other things, 22 —2 € Q[z], and so Q(v/2) ~ F[z]/ (p(z)) where p(z) is a polynomial in Q[z]
of minimal degree which is irreducible over Q. In fact we know that Q(v2) ~ F[z]/ (2 — 2)
but in this new theorem we started with v/2 and the theorem proves the existence of the
polynomial from the field extension rather than the other way around.

Corollary: If a € E D F is algebraic over F' then there is a unique monic irreducible
polynomial in F[z] for which a is a root.

Proof: If p(x) is the polynomial arising in the previous proof then we can multiply by
the multiplicative inverse of the leading coeflicient to get a monic irreducible polynomial.
To show it is unique suppose pi(x) # p2(x) were both monic irreducible polynomials of
minimal degree with py(a) = pa(a) = 0. Then (p; — p2)(x) would be a nonzero polynomial
of smaller degree for which a is a root. Now then either p; — po itself is irreducible or it
has an irreducible factor which will also have a as a root. Either way we have a nonzero
polynomial of smaller degree for which a is a root, a contradiction. QED

Definition: The polynomial arising in the previous theorem is called the minimal polyno-
mial for a over F.

Corollary: If p(x) is the minimal polynomial for a« € E O F over F then for all f(x) € F[z]
with f(a) =0 we have p(z) | f(z) in Flz].

Proof: For any other f(x) € Flz] with f(a) = 0 we know that f(x) € Ker ¢ = (p(z)) with
the ¢ from the theorem. Then p(z) | f(z) by definition of (p(z)). QED

4. The Degree of an Extension

(a)

Definition: Let E be an extension field of F. We say that E has degree n over F and
write [E : F] = n if E has dimension n as a vector space over F. If [E : F] is finite we say
that E is a finite extension of F' and otherwise we say that E is an infinite extension of F.
Note: Basically (haha) if we can find a set B = {by,...,b,} taken from E such that
every element of E can be written uniquely as a linear combination of elements of B using
coefficients in E then B is the basis and [E : F| = n is the dimension.

Example: We have [C : R] = 2 since {1,i} form a basis for C over reals because every
element of C can be written in the form a(1) + b(7) with a,b € R.

Example: We have [Q(\‘q/?) : (@] = 3 because elements in Q(+/2) have the unique form
co+ V2 + a2(€/§)2 with cg, c1,co € Q by a previous theorem.

Theorem: If F is a finite extension of F' then each a € FE is algebraic over F' and so F is
algebraic over F'.

Proof: Suppose [E : F] = n and a € E. The set {1,a,...,a"} contains more than n
elements and hence is linearly dependent over F', meaning there are constants c, ..., cp
with ¢g + cia + ... + ¢pa™ = 0. Then a is a root of f(x) = ¢o + 1z + ... + ¢,2™ and hence
is algebraic. QED
Note: The converse is false, for example Q(v/2, V/2, v/2, ...) (forever!) is algebraic but not
finite. Do you see why?

Theorem: If we have finite field extensions F C E C K then [K : F] = [K : E][E : F].
Proof: Omit. The details are just icky and unenlightening and the basic idea can be
captured with an example. QED
Example: Suppose we take Q and extend it to Q(v/2) we have a degree 2 field extension
with basis {1,v/2} in which all elements have the form a + bv/2 with a,b € Q.

Suppose we then extend from Q(v/2) to Q(v/2)(¥/5) = Q(v/2, ¥/5). This is a degree 3 field
extension with basis {1,/5, (v/5)2} in which all elements have the form ¢ + dv/5 + e(v/5)?
with ¢, d, e € Q(+/2).



Really then all elements in Q(v/2, v/5) have the form:
c+ d\/5+ 6(\/5)2 = (a1 + bl\@) + (CLQ + bQ\/§)€/5+ (a3 + bg\@)(%)2
= a1 + b V2 + ax V5 + by V2V/5 + a3(\3/5)2 + 53\@(\3/5)2
Thus Q(v/2, ¥/5) is a degree 6 field extension of Q with basis:

{1V, V5, V25, (5)%, Va(V5) |

Note that conceptually we could have extended it to Q(+/5) first, and this leads to the
following diagram:

Q(v2,V/5)

Note: The theorem can also inform us about what field extensions are possible and whether
elements are or are not in field extensions.

Example: By the above example any field extension between Q and Q (\/?, \“’/5) must

have degree over Q which divides 6. This also tells us, for example, that v/7 & Q (v/2, V/5).
This is because if it were then we would have:

QCQ(¥7) cQ(v2, ¥5)

and hence:
0(v2.) -q] - [o(v2 ) -] [ar#7)-q

6 ? 4

However 4 1 6.



5. Final Theorems

(a)

Theorem: If K is algebraic over F and F is algebraic over F' then K is algebraic over F.

Proof: Let a € K. Since K is algebraic over E there is some irreducible polynomial
p(z) = cpa™ + ... + c1x + ¢ with ¢; € E such that p(a) = 0. Consider now the diagram:

K
VRN
F(co,c1y.esCnya) E

NS

F(co,c1yeyCn)

v
e

F‘(Co7 Cl)
/
F(co)

/

F

Since each ¢; is algebraic over F' each field extension up until the split is finite. Moreover
the left branch is degree n and so a € F'(cp,c1, ..., Cn, a) which is a finite extension over F.
Thus a is algebraic over F. QED

Theorem: Let E be an extension field of F. Then the set of all elements in E which are
algebraic over F' form a subfield of F.

Proof: Suppose a,b € E are algebraic over F' and b # 0. Consider that [F(a,b) : F] =
[F(a,b) : F()][F(b) : F] which is finite since a,b are algebraic. Thus since a + b,a —
b,ab,a/b € F(a,b) we know that all four are in a finite extension of F' and hence are
algebraic over F'. Thus the set of elements in E which are algebraic over F' form a subfield
of E.



