- 1. **Finite versus Infinite Groups and Elements:** Groups may be broadly categorized in a number of ways. One is simply how large the group is.
 - (a) **Definition:** The order of a group G, denoted |G|, is the number of elements in a group. This is either a finite number or is infinite. We will not distinguish beetween various infinite cardinalities.
 - Example: If $G = \mathbb{Z}$ then $|G| = \infty$.
 - Example: If $G = (\mathbb{Z}_7, + \mod 7)$ then |G| = 7.
 - **Example:** If $G = U(8) = (\{1, 3, 5, 7\}, \cdot \text{ mod } 8)$ then |G| = 4.
 - (b) **Definition:** Given a group G and an element $g \in G$, we define the order of g, denoted |g|, to be the smallest positive integer n such that $g^n = e$. If there is no such n then we say $|g| = \infty$. Notice that if the operation is addition then g^n means g + ... + g = ng.
 - Example: If $G = \mathbb{R} \{0\}$ then |1| = 1, |-1| = 2, and otherwise $|g| = \infty$.
 - Example: If $G = \mathbb{Z}_{10}$ then check out all the elements.
 - Example: If G = U(8) then check out all the elements.
- 2. **Subgroups:** When we're trying to understand the structure of a particular group it can be helpful to note that sometimes a group will have other groups as subsets of them. For example the group $2\mathbb{Z}$ sits inside the group \mathbb{Z} .
 - (a) **Definition:** If G is a group and if $H \subseteq G$ is a group itself using G's operation then G is a subgroup of G. We write $H \subseteq G$.
 - Example: $2\mathbb{Z}$ is a subgroup of \mathbb{Z} .
 - Example: $\{-1,1\}$ is a subgroup of $\mathbb{R} \{0\}$.
 - Example: \mathbb{Z}_5 is not a subgroup of \mathbb{Z} . It is a subset but the operations are different.
 - (b) **Theorem (One-Step Subgroup Test):** Let G be a group and let $H \subseteq G$ with $H \neq \emptyset$. If $\forall a, b \in H$ we have $ab^{-1} \in H$ then $H \leq G$.

Proof: We need to verify closure and the additional three requirements but we need to do these in a particular order. We have associativity because the operation of H is the same as G. Since $H \neq \emptyset$ pick any $a \in H$. Then $aa^{-1} = e \in H$ so H has the identity. Pick any $a \in H$ then $ea^{-1} \in H$ so we have inverses. Pick any $a, b \in H$ Then $b^{-1} \in H$ and so $ab = a(b^{-1})^{-1} \in H$ and we have closure.

Example: If G is an Abelian group then $H = \{x \mid x^2 = e\} \leq G$. **Proof:**

 \mathcal{QED}

(c) **Theorem (Two-Step Subgroup Test):** Let G be a group and let $H \subseteq G$ with $H \neq \emptyset$. If $\forall a, b \in H$ we have $ab \in H$ and $a^{-1} \in H$ then $H \leq G$.

Proof: Given $a, b \in H$ since $b^{-1} \in H$ we have $ab^{-1} \in H$ and so the One-Step Subgroup Test is satisfied. \mathcal{QED}

Example: If G is an Abelian group then $H = \{x \mid |x| < \infty\} \le G$.

Proof: \mathcal{QED}

(d) **Theorem (Finite Subgroup Test):** Let G be a group and let $H \subseteq G$ with $|H| < \infty$. If $\forall a, b \in H$ we have $ab \in H$ then $H \subseteq G$.

Proof: We need to show that $a^{-1} \in H$ for all $a \in H$ and then the Two-Step Subgroup

Test is satisfied. Given $a \in H$ if a = e then $a^{-1} = e$ and we're done. If $a \neq e$ consider $S = \{a, a^1, a^2, ...\} \subseteq H$ by closure. Since H is finite two of these must be identical, say $a^j = a^k$ for $1 \leq j < k$. Then by canceling a^j we get $e = a^{k-j} = aa^{k-j-1}$ and so a^{k-j-1} is the inverse of a and is in S hence in H.

- 3. **Special Subgroups:** There are certain subgroups of groups which will be particularly useful to us.
 - (a) **Definition/Theorem:** For $g \in G$ define the set:

$$\langle g \rangle = \{ g^n \, | \, n \in \mathbb{Z} \}$$

Then $\langle g \rangle \leq G$, this is called the subgroup generated by g.

Note: When we write something like g^{-2} we mean the inverse of g^2 . **Proof:** Omit. Easy. Try it!

Proof: Omit. Easy. Try it! **Example:** $\langle 3 \rangle \subseteq \mathbb{R} - \{0\}$.

Note: If the operation is addition then this is the set of multiples of g as well as multiples of the inverse of g.

Example: $\langle 3 \rangle \subseteq \mathbb{Z}$.

(b) **Definition/Theorem:** For a group G define the center of G:

$$Z(G) = \{ g \in G \mid \forall x \in G, gx = xg \}$$

Then $Z(G) \leq G$.

Note: Z(G) is the set of things in G which commute with everything in G.

Note: The Z stands for "Zentrum", a German word for "Center".

Proof: We'll use the two-step subgroup test. Assume $a, b \in Z(G)$ so that for all $x \in G$ we have ax = xa and bx = xb. Let $x \in G$. First note that since xa = ax we have $a^{-1}xaa^{-1} = a^{-1}axa^{-1}$ and so $a^{-1}x = xa^{-1}$ and so $a^{-1} \in Z(G)$. Second note abx = axb = xab so $ab \in Z(G)$.

(c) **Definition/Theorem:** For a group G and a specific $g \in G$ define the centralizer of g in G.

$$C(q) = \{ x \in G \mid xq = qx \}$$

Then $C(g) \leq G$.

Note: C(g) is the set of things in G which commute with g specifically.

Proof: We'll use the two-step subgroup test. Assume $a, b \in C(g)$ so that ag = ga and bg = gb. The rest is the same as the previous proof except we're only using g specifically and not an arbitrary $x \in G$.

It's worth taking a second to consider the difference between the center and a centralizer. The center consists of all the elements which commute with everything. For a centralizer we take a specific element and find all the elements which commute with that specific element. It's fairly clear that $Z(G) \subseteq C(g)$ (can you prove it?) and counterexamples can be found with $C(g) \not\subseteq Z(G)$.